

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Tel.: (34) 91 302 04 40 direccion.ietcc@csic.es

Fax: (34) 91 302 07 00 https://dit.ietcc.csic.es

European Technical Assessment

ETA 20/0494 of 21/12/2020

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Trade name of the construction product:

Product family to which the construction product belongs: Screw anchor THE

Screw anchor of sizes 5 and 6 for use in concrete and in precast prestressed hollow core slabs for redundant non-structural systems

Manufacturer:

Index - Técnicas Expansivas S.L.

Segador 13

26006 Logroño (La Rioja) Spain. website: www.indexfix.com

Manufacturing plant:

Index plant 2

This European Technical Assessment contains:

13 pages including 3 annexes which form an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of:

European Technical Assessment EAD 330747-00-0601 "Fasteners for use in concrete for redundant non-structural systems", ed. May 2018

This ETA replaces:

ETA 20/0494 issued 29/06/2020

Page 2 of European Technical Assessment ETA 20/0494 of 21th December 2021

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Index screw anchor THE is a fastener made of carbon steel of sizes 5 and 6. The fastener is installed into a predrilled cylindrical drilled hole. The special thread of the fastener cuts an internal thread into the concrete member while setting. The anchorage is characterised by mechanical interlock between fastener and concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based, lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
	Anchorages satisfy requirements for class A1 according to EN 13501-7
Resistance to fire	See annex C5

3.2 Safety in use (BWR 4)

Essential characteristic					Performance		
Characteristic loading	resistance	under	static	or	quasi	static	See annex C3 and C4

4. Assessment and Verification of Constancy of Performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performance (see annex V to Regulation (EU) No 305/2011) is 97/161/EC.

The system to be applied is 2+.

English translation prepared by IETcc

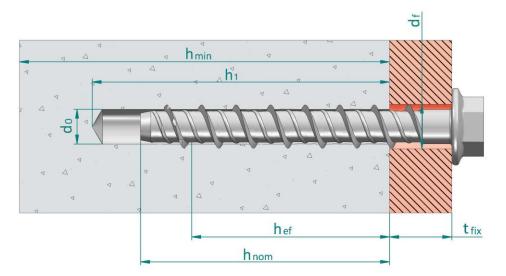
5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 21th of December 2021


Director IETcc-CSIC

Product types

Picture	Sizes	Code	Coating
_		THE	Atlantis
		TFE	Zinc plated
	Hexagonal head with flange	TNE	Zinc nickel
_		TKE	Zinc flake
4		THA	Atlantis
	Countaryunk Six lab raceas	TFA	Zinc plated
	Countersunk, Six lob recess	TNA	Zinc nickel
		TKA	Zinc flake
_		THN	Atlantis
	Hexagonal head	TFN	Zinc plated
	Tiexagoriai fieau	TNN	Zinc nickel
		TKN	Zinc flake
		THT	Atlantis
	Pan head. Six lob recess	TFT	Zinc plated
	T all flead. Six lob fecess	TNT	Zinc nickel
		TKT	Zinc flake
N		THP	Atlantis
	Truss head. Six lob recess	TFP	Zinc plated
Artification 1	Truss fiedd. Oix fob feedss	TNP	Zinc nickel
		TKP	Zinc flake
	Chied board with DIN 024 along C	TFW	Zinc plated
	Stud head with DIN 934 class 6 nut and DIN 125 washer	TNW	Zinc nickel
		TKW	Zinc flake
		TFS	Zinc plated
	Stud head	TNS	Zinc nickel
		TKS	Zinc flake
	Mole thread	TFM	Zinc plated
	Male thread External thread M8; M10	TNM	Zinc nickel
		TKM	Zinc flake
	Complethreed (red barrer)	TFF	Zinc plated
	Female thread (rod hanger) Internal thread M8 / M10	TNF	Zinc nickel
		TKF	Zinc flake

THE screw anchor	_
Product description	Annex A1
Screw types	

Installed condition in concrete

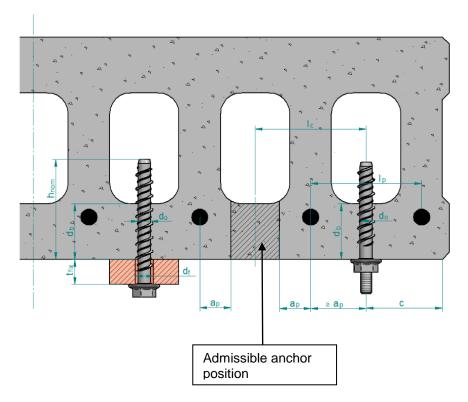
d₀: Nominal diameter of drill bit
 d_f: Fixture clearance hole diameter
 h_{ef}: Effective anchorage depth
 h₁: Depth of drilled hole

h_{nom}: Overall fastener embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Fixture thickness

Identification on head of fastener: company logo + size x length


The tip of the thread may be coloured

For heads where no space enough space is available, length mark can be replaced by the following letter codes.

Letter on head	Length [mm]
Α	35 ÷50
В	51 ÷ 62
С	63 ÷75
D	76 ÷ 88
Е	89 ÷ 101
F	102 ÷ 113
G	114 ÷ 126
Н	127 ÷139
I	140 ÷153

THE screw anchor	
Product description	Annex A2
Installed condition in concrete	

Installed condition in precast prestressed hollow core concrete slabs

d₀: Nominal diameter of drill bit

d_f: Fixture clearance hole diameter

d_b: Bottom flange thickness

a_p: Distance between anchor position and prestressing steel ≥ 50 mm

I_c: Core distance ≥ 100 mm

I_p: Steel reinforcement distance ≥ 100 mm

t_{fix}: Fixture thicknessc: Edge distance

Table A1: Materials

Item	Designation	Material for screw anchor
1	Fastener body	Carbon steel, galvanized ≥ 5 µm ISO 4042 Zn5 Carbon steel, zinc nickel ≥ 8 µm ISO 4042, ZnNi8/An/T2 Carbon steel, zinc flake ≥ 6 µm ISO 10683 Carbon steel, Atlantis coating

THE screw anchor	
Product description	Annex A3
Installed condition in prestressed hollow core slabs and materials	

Specifications of intended use

Anchorages subjected to:

- Static or quasi static loads for redundant non-structural systems
- Use for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs)
- The anchor may only be used if in the design and installation specifications for the fixture the excessive slip or failure of one anchor will not result in a significant violation of the requirements on the fixture in the serviceability and ultimate state.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked or uncracked concrete.
- Precast, prestressed hollow core concrete slabs, strength C30/37 to C50/60 according to EN 206:2013

Use conditions (environmental conditions):

Anchorages subjected to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be
 ensured that local spalling of the concrete cover does not occur.

Installation:

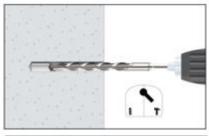
- Hole drilling by rotary plus hammer mode.
- Fastener installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.

THE screw anchor	
Intended use	Annex B1
Specifications	

Table C1: Installation parameters in concrete

Inatalla	4:au uau			Performances					
Installation parameters in concrete					5	6			
h _{nom}	Nominal	embedment depth:	[mm]	35	45	35	55		
h _{ef}	Effective	anchorage depth:	[mm]	26.5	35.0	26.0	43.0		
d_0	Nominal	diameter of drill bit:	[mm]		5		6		
df	Clearand	ce hole diameter ≤	[mm]		8		9		
T _{inst,max}	Installati	on torque ≤	[Nm]		5		10		
h ₁	Depth of	f drilled hole ≥	[mm]	45	55	45	65		
h _{min}	Minimum thickness of concrete member:		[mm]	80	80	80	90		
L _{min}	T		[mm]	42	52	40	60		
L _{max}	rotal len	igth of the fastener:	[mm]	100	120	150	150		
t _{fix}	Thickness of fixture 1 ≤		[mm]	L-35	L-45	L-35	L-55		
	Caalcat	THE, TFE	[mm]	8			10		
SW	Socket	TFF, TFM	[mm]				13		
	size	TFS	[mm]			5			
	Six lob	THA	[]	2	25	30			
TX		THP	[]	30		40			
	recess	THT	[]				30		
dk	Diameter of countersunk head:		[mm]	10.4		12.4			
Smin	Minimum allowable spacing: [mm]		35		35				
C _{min}	Minimum	n allowable distance:	[mm]		35	35			
	Setting t	ool	_	Bosch GDS	S 18E, 500 W. T	impact,max 250 Nm	n, or equivalent		

¹⁾ L = total fastener length

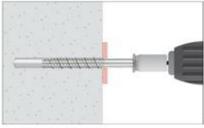

Table C2: Installation parameters in prestressed hollow core concrete slabs

Installation parameters in prestressed			Performances							
hollow	hollow core concrete slabs				5			6		
d ₀	Nominal	diameter of drill bit:	[mm]		5			6		
df	Clearan	ce hole diameter ≤	[mm]		8			9		
T _{inst,max}	Installati	on torque ≤	[Nm]		5			10		
h ₁	Depth of	f drilled hole ≥	[mm]	30	30 40 45		30	40	45	
d _c	Minimum slab member thickness:		[mm]	25	30	40	25	30	40	
L _{min}	T		[mm]	42			40			
L _{max}	i otal ler	Total length of the fastener:		100			150			
	Caaliat	THE, TFE	[mm]		8			10		
SW	Socket size	TFF, TFM	[mm]			13				
	SIZE	TFS				5				
	Six lob	THA	[]	25		30				
TX		THP	[]		30			40		
	recess	THT	[]				30			
dk	Diameter of countersunk head:		[mm]	10.4		12.4				
Smin	Minimum allowable spacing: [mm]		[mm]	35		35				
C _{min}	Minimum allowable distance: [mm]		35			35				
	Setting t	ool		Bosch	GDS 18E	, 500 W. T	impact,max 250	Nm, or eq	uivalent	
Setting tool Bosch GDS 18E, 500 W. T _{impact,max} 250 Nm, or equivalent										

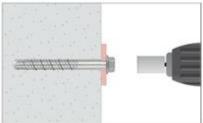
¹⁾ L = total fastener length

THE screw anchor	
Performances	Annex C1
Installation parameters	

Installation procedure


1. DRILL

Drill a hole into the base material of the correct diameter and depth using a carbide drill bit in rotary plus hammer mode.


2. BLOW AND CLEAN

Remove dust and debris from hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.

3. INSTALL

Select a powered impact wrench or a torque wrench that does not exceed the maximum torque $T_{impact,max}$ or $T_{inst,max}$ respectively. Attach an appropriate sized hex socket or six lob bit to the wrench. Mount the screw anchor head in the socket / bit.

4. APPLY TORQUE

Drive the anchor with an impact driver or a torque wrench through the fixture and into the hole until the anchor head comes in contact with the fixture. The anchor must be snug after installation. Do not spin the socket off the anchor to disengage.

THE screw anchor	
Performances	Annex C2
Installation procedure	

<u>Table C3: Characteristic values to tension loads in concrete of design method A according to EN 1992-4</u>

Characteristic values of resistance to			Performances					
tension loads according to design method A				5		6		
h _{nom}	Nominal emb	edment depth:	[mm]	35	45	35	55	
Tensi	on loads: ste	el failure						
$N_{Rk,s}$	Characteristic	resistance:	[kN]	17.	.8	25.2	2	
γMs	Partial safety	factor 1):	[-]	1.4	4	1.4		
Tensi	on loads: pul	I-out failure in	concre	te				
N _{Rk,p}	Characteristic C20/25 uncra	resistance in cked concrete:	[kN]	2)				
$N_{Rk,p}$	Characteristic C20/25 crack		[kN]	2)				
	C30/37 [-		[]	1.14	1.02	1.15	1.22	
Ψ_{c}	Increasing factor for concrete	C40/45	[]	1.26 1.04 1.27		1.27	1.41	
		C50/60	[]	1.38	1.05	1.38	1.58	
Tensi	on loads: cor	ncrete cone and	d splitti	ng failure				
h _{ef}	Effective anch		[mm]	26.5	35.0	26.0	43.0	
k _{ucr,N}	Factor for und concrete:	cracked	[-]	11.0				
k _{cr.N}	Factor for cra	cked concrete:	[-]	7.7				
S _{cr,N}	Concrete	Spacing:	[mm]	3 x h _{ef}				
C _{cr,N}	cone failure	Edge distance	[mm]	1,5 x h _{ef}				
S _{cr,sp}	Spitting	Spacing:	[mm]	80	105	90	170	
C _{cr,sp}	failure	Edge distance	[mm]	40	52.5	45	85	
γinst	Installation sa	fety factor:	[]	1.0	1.0	1.2	1.0	

¹⁾ In absence of other national regulations

<u>Table C4: Characteristic values to shear loads in concrete of design method A according to EN 1992-4</u>

Characteristic values of resistance to shear loads according to design method A			Performances				
			5		6		
h _{nom}	Nominal embedment depth:	[mm]	35 45		35	55	
Shear	loads: steel failure withou	t lever a	rm				
$V_{Rk,s}$	Characteristic resistance:	[kN]	8.1	9	12.	53	
k ₇	Ductility factor:	[]		0	.8		
γMs	Partial safety factor 1):	[]		1	.5		
Shear	loads: steel failure with le	ver arm					
$M^0_{Rk,s}$	Characteristic bending moment:	[Nm]	11.86 21.6		.6		
γMs	Partial safety factor 1):	[-]		1	.5		
Shear	· loads: concrete pryout fai	lure					
k ₈	Pryout factor:	[mm]		1	.0		
γins	Installation safety factor:	[]	1.0				
Shear	loads: concrete edge failu	re					
ℓ f	Effective length of fastener under shear loads:	[mm]	26.5	35	26.0	43.0	
d _{nom}	Outside fastener diameter:	[mm]	5 6				
γinst	Installation safety factor:	[]	1.0				

¹⁾ In absence of other national regulations

THE screw anchor	_
Performances	C3
Characteristic values for tension and shear loads in concrete	

²⁾ Pull out failure is not decisive

<u>Table C5: Characteristic values to tension loads in precast, prestressed hollow core slabs</u>
<u>C30/37 to C50/60 of design method A according to EN 1992-4</u>

Characteristic values of resistance to tension loads according to design method A			Performances						
				5			6		
dь	Minimum bottom flange [mm]		25	30	40	25	30	40	
Tensi	on loads: ste	el failure			•	•	•	•	
N _{Rk,s}	Characteristic	resistance:	[kN]		16.4			25.2	
γMs	Partial safety	factor 1):	[-]		1.4			1.4	
Tensi	on loads: pul	I-out failure in	concret	e					
$N_{Rk,p}$	Characteristic	resistance in oncrete slab::	[kN]	2)					
Tensi	on loads: cor	ncrete cone and	d splitti	ng failure	ļ				
h _{ef}		norage depth:	[mm]	20	22	26.5	20	22	26
k _{ucr,N}	Factor for und concrete:	cracked	[-]	11.0					
S _{cr,N}	Concrete	Spacing:	[mm]	3 x h _{ef}					
C _{cr,N}	cone failure	Edge distance	[mm]	1,5 x h _{ef}					
S _{cr,sp}	Spitting	Spacing:	[mm]	80 90					
C _{cr,sp}	failure	Edge distance	[mm]		40			45	
γinst	Installation sa	fety factor:	[]	1.2 1.2					

¹⁾ In absence of other national regulations

<u>Table C6: Characteristic values to shear loads in precast, prestressed hollow core slabs</u> C30/37 to C50/60 of design method A according to EN 1992-4

Characteristic values of resistance to shear loads according to design method A			Performances					
				5		6		
dь	Minimum bottom flange thickness:	[mm]	25	30	40	25	30	40
Shear	· loads: steel failure withoเ	ıt lever aı	rm					
$V_{Rk,s}$	Characteristic resistance:	[kN]		8.2			12.5	
γMs	Partial safety factor 1):	[]		1.5			1.5	
Shear	loads: steel failure with le	ver arm				•		
$M^0_{Rk,s}$	Characteristic bending moment:	[Nm]	11.9 21.6					
γMs	Partial safety factor 1):	[-]		1.5		1.5		
Shear	loads: concrete pryout fa	ilure				•		
k ₈	Pryout factor:	[mm]			1.	.0		
γins	Installation safety factor:	[]	1.0					
Shear	loads: concrete edge failu	ıre						
ℓ f	Effective length of fastener under shear loads:	[mm]	20	22	26.5	20	22	26
d _{nom}	Outside fastener diameter:	[mm]	5 6					
γinst	Installation safety factor:	[]	1.0					

¹⁾ In absence of other national regulations

THE screw anchor	
Performances	Annex C4
Characteristic values for tension and shear loads in prestressed hollow core slabs	

²⁾ Pull out failure is not decisive

Table C7: Characteristic values for resistance to fire in concrete

Characteristic values for resistance to				Performa	ances		
fire in co				6			
h _{nom}	Nominal embedment	depth:	[mm]	35	55		
Steel fai	ilure						
		R30	[kN]	0.26	6		
N _{Rk,s,fi}	Characteristic	R60	[kN]	0.23			
INRK,S,fi	tension resistance:	R90	[kN]	0.18			
		R120	[kN]	0.13			
		R30	[kN]	0.26			
$V_{Rk,s,fi}$	Characteristic shear	R60	[kN]	0.23			
V KK,S,II	resistance:	R90	[kN]	0.18			
		R120	[kN]	0.13			
		R30	[kN]	0.22			
$M^0_{Rk,s,fi}$	Characteristic	R60	[kN]	0.20			
IVI KK,S,II	bending resistance:	R90	[kN]	0.16			
		R120	[kN]	0.11	1		
Pull out	failure						
$N_{Rk,p,fi}$	Characteristic resistance:	R30 - R120	[kN]	2)			
Concret	e cone failure 1)						
$N_{Rk,p,fi}$	Characteristic	R30 - R90	[kN]	0.59	2.09		
	resistance:	R120	[kN]	0.47	1.67		
S _{cr.N,fi}	Critical spacing:	R30 - R120	[mm]	4 x h	lef		
Smin,fi	Minimum spacing:	R30 - R120	[mm]	35			
Ccr.N,fi	Critical edge distance:	R30 - R120	[mm]	2 x h _{ef}			
C _{min,fi}	Minimum edge distance:	R30 - R120	[mm]	c_{min} = 2 x h_{ef} ; if fire attack comes from more than one side, the edge distance of the anchor has to be \geq 300 mm			
Concret	e pry out failure						
k ₈	Pry-out factor:	R30 - R120	[mm]	1.0			

¹⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.

THE screw anchor	_
Performances	Annex C5
Characteristic values for resistance to fire in concrete	

Pull out failure is not decisive
In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi} = 1,0$ is recommended