

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache, 4. 28033 Madrid (Spain) Tel.: (+34) 91 302 0440 www.ietcc.csic.es gestiondit@ietcc.csic.es dit.ietcc.csic.es www.ietcc.csic.es dit.ietcc.csic.es

* \star **European Technical**

ETA 18/1108

14/03/2025

Assessment English translation prepared by IETcc. Original version in Spanish language

Designated

according to

Article 29 of Regulation (EU) No 305/2011

General Part

Technical Assessment Body issuing the European Technical Assessment: Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)					
Trade name of the construction product	Anchors SLPT				
Product family to which the construction product belongs	Torque controlled expansion anchor made of steel of sizes M6, M8, M10, M12, M16 and M20 for use in concrete.				
Manufacturer	Index - Técnicas Expansivas S.L. Segador 13 26006 Logroño (La Rioja) Spain. website: <u>www.indexfix.com</u>				
Manufacturing plant	Index plant 2				
This European Technical Assessment contains	18 pages including 3 annexes which form an integral part of this assessment.				
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	European Assessment Document EAD 330232-01-0601 "Mechanical Fasteners for use in concrete", ed. December 2019				
This ETA replaces	ETA 18/1108 revision 3 dated 23/01/2025				

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such

SPECIFIC PART

1. Technical description of the product

The Index SLPT heavy duty anchor product in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of galvanised steel. SLPT, SLAT, SLPS, SLAS anchors have a hexagonal head; SLPC, SLAC anchors have countersunk head and the SLPE, SLAE are the projecting bolt version. The anchor is installed into a predrilled cylindrical hole and anchored by torque-controlled expansion. The anchorage is characterised by friction between the expansion sleeve and the concrete.

Product and installation descriptions are given in annex A1.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

2.1 Intended use

This ETA covers fasteners to be used in compacted, reinforced or unreinforced, normal weigh, cracked or uncracked concrete without fibers with strength classes in the range of C20/25 to C50/60 all in accordance with EN 206, for static or quasi-static or under seismic actions (categories C1 and C2) and with requirements related to fire exposure, loaded in tension, shear or combined tension and shear.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B1.

2.2 Relevant general conditions for the use of the product

The assessment methods included or referred to in this EAD have been written based on the manufacturer's request to take into account a working life of the fastener for the intended use of 50 years when installed in the works (provided that the fastener is subject to appropriate installation). These provisions are based upon the current state of the art and the available knowledge and experience.

When assessing the product, the intended use as foreseen by the manufacturer shall be taken into account. The real working life may be, in normal use conditions, considerably longer without major degradation affecting the basic requirements for works.

The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer or its representative nor by EOTA when drafting the EAD nor by the Technical Assessment Body issuing an ETA based on this EAD, but are regarded only as a mean for expressing the expected economically reasonable working life of the product.

This ETA covers fasteners for installation in pre-drilled holes in compacted reinforced or unreinforced normal weight concrete without fibers considering annexes B and C.

3. Performance of the product and references to the methods used for its assessment

The identification tests and the assessment for the intended use of this product according to the Basic Work Requirements (BWR) were carried out in compliance with EAD 330232-01-0601. The characteristics of each system shall correspond to the respective values laid down in following tables of this ETA, checked by IETcc.

Methods of verification and of assessing and judging are listed afterwards.

Relevant clause **Essential characteristic** Performance Annex in EAD $N_{Rk,s}[kN]$ C3, C4 Resistance to steel failure 2.2.1 N_{Rk,p} [kN] Resistance to pull-out failure 2.2.2 C3, C4 Ψ_c[-] $k_{cr,N}, k_{ucr,N}$ [-] 223 C3, C4 Resistance to concrete cone failure h_{ef}, c_{cr,N} [mm] Robustness 2.2.4 γinst [-] C3, C4 Minimum edge distance and spacing 2.2.5 c_{min}, s_{min}, h_{min} [mm] Edge distance to prevent splitting under load 2.2.6 $N_{Rk,sp}^{0}$ [kN], $c_{cr,sp}$ [mm] C3, C4 $V_{Rk,s}^{0}$ [kN], $M_{Rk,s}^{0}$ Resistance to steel failure under shear load 2.2.7 C5, C6 [Nm], k₇ [-] Resistance to pry-out failure 2.2.8 k₈ [-] C5, C6 Displacement under static and quasi-static C3, C4, $\delta_{N0}, \delta_{N^{\infty}}, \delta_{V0}, \delta_{V^{\infty}}$ [mm] 2.2.10 loading C5, C6 $N_{Rk,s,C1}, N_{Rk,p,C1}$ [kN] Resistance to seismic tension loads; 2.2.11 C7, C8 $N_{Rk,s,C2}$, $N_{Rk,p,C2}$ [kN], 2.2.12 displacements $\delta_{N,C2}$ [mm] $V_{Rk,s,C1}$ [kN], $V_{Rk,s,C2}$ Resistance to seismic shear loads; 2.2.13 C7, C8 displacements 2.2.14 [kN], δ_{V,C2} [mm]

C1

C7, C8

3.1 Mechanical resistance and stability (BWR 1)

Safety in case of fire (BWR 2) 3.2

Factor for annular gap

Essential characteristic	Relevant clause in EAD	Performance	Annex
Reaction to fire	2.2.16	Anchorages satisfy requirements for class A1 according to EN 13501-1	
Fire resistance to steel failure, tension load	2.2.17	N ^o _{Rk,s,fi} [kN]	C9, C10
Fire resistance to pull out failure, tension load	2.2.18	N ⁰ _{Rk,p,fi} [kN]	C9, C10
Fire resistance to steel failure, shear load	2.2.19	V⁰ _{Rk,s,fi} [kN] M _{Rk,s,fi} [Nm]	C9, C10

2.2.15

α_{gap} [-]

3.3 Durability

Essential characteristic	Relevant clause in EAD	Performance	Annex	
Durability:				
SLPT, SLPC, SLPE, SLPS	2.2.20	Coated in zinc plated	A2	
SLAT, SLAC, SLAE, SLAS		Coated in zinc nickel		

4. Assessment and Verification of Constancy of Performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performance (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

Technical details necessary for the implementation of the AVCP system are laid down in the quality plan which is deposited at IETcc⁽¹⁾.

Issued in Madrid on 14th of March 2025

Director on behalf of Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc – CSIC)

⁽¹⁾ The Quality Plan is a confidential part of the ETA and only handed over to the notified certification body involved in the assessment and verification of constancy of performance.

<u>Table</u>	A1: Materials							
Item	Designation	Material for SLPT	Material for SLPS	Material for SLPC	Material for SLPE			
1	Bolt	DIN 931 ISO 8 Galvanized ≥ 5 μm	98-1 class 8.8. ISO 4042 Zn5/An/T0	DIN 7991 ISO 898-1 class 10.9. Galvanized ≥ 5 µm ISO 4042 Zn5/An/T0				
2	Projecting bolt	-			Threaded stud class 8.8 ISO 898-1. Galvanized ≥ 5 µm ISO 4042 Zn5/An/T0			
3	Nut	-			Standard nut class 8. Galvanized ≥ 5 µm ISO 4042 Zn5/An/T0			
4	Washer	DIN 9021 or DIN 440 ISO 4042	0. Galvanized ≥ 5 μm Zn5/An/T0	Special conical washer. Galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 9021 or DIN 440. Galvanized ≥ 5 µm ISO 4042 Zn5/An/T0			
5	Sleeve	(Carbon steel. Galvanize	d ≥ 5 µm ISO 4042 Zn5/An	/ТО			
6	Plastic ring			POM				
7	Expansion	(Carbon steel. Galvanize	d ≥ 5 µm ISO 4042 Zn5/An	/ТО			
8	Cone	Harde	ened carbon steel. Galva	anized ≥ 5 µm ISO 4042 Zr	n5/An/T0			
		-						
ltem	Designation	Material for SLAT	Material for SLAS	Material for SLAC	Material for SLAE			
1	Bolt	DIN 931 ISO 8 Zinc nickel ≥ 8 μm ZnNi8	98-1 class 8.8. n, sealed ISO 4042 /An/T2	DIN 7991 ISO 898-1 .8. class 10.9. 4042 Zinc nickel ≥ 8 μm, sealed ISO 4042				
2	Projecting bolt	-			Threaded stud class 8.8 ISO 898-1. Zinc nickel ≥ 8 µm, sealed ISO 4042 ZnNi8/An/T2			
3	Nut	-		Standard nut c Zinc nickel ≥ 3 sealed ISO 4 ZnNi8/An/				
4	Washer	DIN 9021 or DIN 440 sealed ISO 404	0. Zinc nickel ≥ 8 μm, 42 ZnNi8/An/T2	Special conical washer. Zinc nickel ≥ 8 μm, sealed ISO 4042 ZnNi8/An/T2	DIN 9021 or DIN 440. Zinc nickel ≥ 8 µm, sealed ISO 4042 ZnNi8/An/T2			
5	Sleeve	Carbo	on steel. Zinc nickel ≥ 8	µm, sealed ISO 4042 ZnNi	8/An/T2			
6	Plastic ring			POM				
7	Expansion sleeve	Carbo	on steel. Zinc nickel ≥ 8	µm, sealed ISO 4042 ZnNi	8/An/T2			
8	Cone	Hardened	carbon steel. Zinc nicke	el ≥ 8 µm, sealed ISO 4042	ZnNi8/An/T2			
SLPT	SLPT anchor							
Motor					Annex A2			
Materi	ais							

Specifications of intended use

Version	Intended use	M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
	Static or quasi static loads	✓	✓	✓	✓	✓	✓
SLP1/SLAT	Seismic loads category C1		✓	✓	✓	✓	✓
	Seismic loads category C2		✓	✓	✓	✓	✓
SLFE/SLAE	Resistance to fire exposure	\checkmark	✓	✓	✓	✓	\checkmark
	Static or quasi static loads				✓		
	Seismic loads category C1				✓		
SLPS/SLAS	Seismic loads category C2				✓		
	Resistance to fire exposure				✓		

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013 + A2:2021.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013 + A2:2021.
- Cracked or uncracked concrete

Use conditions (environmental conditions):

- Temperature range of the anchorage base material during the working life: -40 °C to +80 °C
- Anchorages subjected to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into considering the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g., position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018
- Anchorages under seismic actions are designed in accordance with EN 1992-4:2018. Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with non-shrinkage mortar with a strength at least or equal of the base material and ≥ 40 N/mm².

SLPT anchor	
Intended use	Annex B1
Specifications	

			Performances						
Insta	llation parameters		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28	
d ₀	Nominal diameter of drill bit:	[mm]	10	12	16	18	24	28	
df	Fixture clearance hole dia. ≤	[mm]	12	14	18	20	26	31	
Tinst	Nominal installation torque:	[Nm]	15	30	50	80	160	240	
h _{min}	Min. thickness of concrete member:	[mm]	100	120	140	170	200	250	
h1	Depth of drilled hole ≥	[mm]	70	85	95	110	130	160	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	59	72	83	97	117	146	
h _{ef}	Effective anchorage depth:	[mm]	50	60	70	85	100	125	
t _{fix}	Thickness of fixture DIN 125 \leq ¹⁾	[mm]	L - 60	L - 75	L - 85	L - 100	L - 120	L - 150	
t _{fix}	Thickness of fixture DIN 440 \leq ¹⁾	[mm]	L - 61	L - 76	L - 86	L - 101	L - 12	L - 151	
S _{min}	Minimum spacing in uncracked concrete:	[mm]	60	70	80	100	125	150	
	for c ≥	[mm]	125	150	195	220	255	405	
Cmin	Minimum edge distance in uncracked concrete:	[mm]	50	60	70	80	100	160	
	for s ≥	[mm]	100	120	175	200	220	320	
Smin	Minimum spacing in cracked concrete:	[mm]	50	70	70	80	120	120	
	for c ≥	[mm]	95	110	145	165	190	310	
Cmin	Minimum edge distance in cracked concrete:	[mm]	50	60	70	80	100	160	
	for s ≥	[mm]	60	70	80	100	125	150	
dc	Diameter of countersunk head in the fixture:	[mm]	16.4	20.6	26.8	30.8	38.8	44.8	
h₀	Height of countersunk head in the fixture:	[mm]	3.2	4.3	5.4	6.4	7.4	8.4	
SW	SLPT / SLAT / SLPE / SLAE socket size:	[]	10	13	17	19	24	30	
SW	SLPC / SLAC hexagonal recess:	[]	4	5	6	8	10	12	

Table C1: Installation parameters SLPT, SLAT, SLPC, SLAC, SLPE, SLAE

¹⁾ L = total anchor length

Table C2: Installation parameters SLPS, SLAS

			Performances				
Instal	lation parameters		SLPS	SLAS			
mstan	lation parameters		M1:	2			
			Ø18	8			
d_0	Nominal diameter of drill bit:	[mm]	18	3			
df	Fixture clearance hole dia. ≤	[mm]	20)			
T _{inst}	Nominal installation torque:	[Nm]	80	40			
h _{min}	Min. thickness of concrete member:	[mm]	12	5			
h ₁	Depth of drilled hole ≥	[mm]	90)			
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	78	3			
h _{ef}	Effective anchorage depth:	[mm]	68	3			
t _{fix}	Thickness of fixture DIN 125 ≤1)	[mm]	L - 8	83			
t _{fix}	Thickness of fixture ¹ DIN 440 $\leq^{11} \leq$	[mm]	L - 8	84			
Smin	Minimum spacing:	[mm]	20	5			
Cmin	Minimum edge distance:	[mm]	11	0			
SW	Socket size:	[]	22	2			
1)	L = total anchor length						

SLPT anchor

Performances

Installation parameters

Annex C1

Table C3: Characteristic values to tension loads of design method A according to EN 1992-4 for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

Characteristic values of resistance to tension				Performances					
loads o	loads of design according to design method A				M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
Resista	nce to steel failure								
N _{Rk,s}	Characteristic resistance	:	[kN]	16.1	29.3	46.4	67.4	126.0	196.0
γMs	Partial safety factor:1)		[-]			1	.5		
Resista	nce to pull-out failure								
N _{Rk,p,ucr}	Characteristic resistanc uncracked concrete:	e in C20/25	[kN]	15.0	20.0		≥ N ⁰ F	Rk.c ²⁾	
N _{Rk,p,cr}	Characteristic resistance in C20/25 [k cracked concrete:		[kN]	$\geq N^0_{Rk.c}^{2}$					
γinst	Robustness:		[-]	1.0	1.0	1.0	1.0	1.2	1.2
	Increasing factor for	C30/37	[-]	1.22	1.22	1.22	1.22	1.08	1.08
ψ_c	N ⁰ _{Rkp} :	C40/50	[-]	1.41	1.41	1.41	1.41	1.15	1.15
		C50/60	[·]	1.58	1.58	1.58	1.58	1.20	1.20
Resista	ince to concrete cone	and splittin	g failure						
h _{ef}	Effective embedment de	pth:	[mm]	50	60	70	85	100	125
k _{ucr,N}	Factor for uncracked cor	crete:	[-]	11.0					
k _{cr.N}	Factor for cracked concr	ete:	[-]	7.7					
γinst	Robustness:		[-]	1.0	1.0	1.0	1.0	1.2	1.2
Scr,N	Spacing, edge distance for concrete		[mm]			3 >	κ h _{ef}		
Ccr,N	cone failure:		[mm]			1.5	x h _{ef}		
N ⁰ Rk,sp	Characteristic splitting resistance:		[kN]			min (Nr	Rk,p; N ⁰ Rk,c)		
Scr,sp	Spacing, edge distance	or splitting	[mm]	205	245	285	345	410	510
Ccr,sp	failure:		[mm]	105	125	145	175	205	255

¹⁾ In absence of other national regulations

 $^{2)}$ Pull out failure is not decisive. $\tilde{N}^{0}_{Rk.c}$ calculated according to EN 1992-4

Table C4: Displacements under static and quasi-static tension loading for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

					Perforr	nances		
Displacements under tension loading			M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	7.43	10.24	13.71	18.38	19.52	27.30
δ _{N0}	Short term displacement:	[mm]	1.18	2.02	1.79	1.15	2.46	2.12
δ _{N∞}	Long term displacement:	[mm]	2.68	2.68	2.68	2.68	2.68	2.68
N	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	5.81	7.62	9.62	12.86	13.65	19.09
δ_{N0}	Short term displacement:	[mm]	1.75	2.69	2.57	3.53	1.76	2.41
δ _{N∞}	Long term displacement:	[mm]	3.75	4.69	4.57	5.53	3.76	4.41

SLPT anchor	
Performances	Annex C3
Characteristic values for tension loads	

Table C5: Characteristic values to tension loads of design method A according to EN 1992-4 for SLPS, SLAS anchors

Charact loads o	teristic values of resist f design according to o	ance to ter design met	nsion hod A	Performances M12 Ø18
Resista	nce to steel failure			
N _{Rk,s}	Characteristic resistance:		[kN]	67.4
γMs	Partial safety factor: 1)		[-]	1.5
Resista	nce to pull-out failure			
N _{Rk,p,ucr}	Characteristic resistance in C20/25		[kN]	$\geq N_{Rk.c}^{0}^{2}$
N _{Rk,p,cr}	Characteristic resistance in C20/25 cracked concrete:		[kN]	$\geq N^{0}_{Rk.c}^{2}$
γinst	Robustnress:		[-]	1.0
	Increasing factor for	C30/37	[-]	1.22
ψ_c	N ⁰ Rk,p for uncracked	C40/50	[-]	1.41
	concrete:	C50/60	[-]	1.58
	Increasing factor for	C30/37	[-]	1.03
ψc	N ⁰ Rk,p for cracked	C40/50	[-]	1.06
	concrete:	C50/60	[-]	1.08
Resista	nce to concrete cone a	and splittin	g failure	
h _{ef}	Effective embedment dep	th:	[mm]	68
kucr,N	Factor for uncracked cond	crete:	[-]	11.0
K cr.N	Factor for cracked concre	te:	[-]	7.7
γinst	Robustness:		[-]	1.0
Scr,N	Spacing, edge distance for concrete		[mm]	3 x h _{ef}
Ccr,N	cone failure:		[mm]	1.5 x h _{ef}
N ⁰ Rk,sp	Characteristic splitting res	sistance:	[kN]	min (N _{Rk,p} ; N ⁰ _{Rk,c})
Scr,sp	Spacing, edge distance for	or splitting	[mm]	440
Ccr,sp	failure:		[mm]	220

¹⁾ In absence of other national regulations

²⁾ Pull out failure is not decisive. N⁰_{Rk.c} calculated according to EN 1992-4

Table C6: Displacements under static and quasi-static tension loading for SLPS, SLAS anchors

Displ	acements under tension loading		Performances M12 Ø18
Ν	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	13.13
δ _{N0}	Short term displacement:	[mm]	2.75
δ _{N∞}	Long term displacement:	[mm]	3.45
N	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	9.20
δ _{N0}	Short term displacement:	[mm]	1.97
δ _{N∞}	Long term displacement:	[mm]	2.67

SLPT anchor	
Performances	

Annex C4

Characteristic values for tension loads

Table C7: Characteristic values to shear loads of design method A according to EN 1992-4 for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

Charac	teristic values of resistance to	shear		Performances						
A		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28			
Resista	nce to steel failure under shea	r loads								
V ⁰ Rk,s	Characteristic resistance:	[kN]	20.2	33.0	62.2	75.1	111.2	141.7		
k 7	Ductility factor:	[-]			1	.0				
M ⁰ _{Rk,s}	Characteristic bending moment:	[Nm]	12.2	30.0	59.8	104.8	266.4	519.3		
γMs	Partial safety factor: 1)	[-]			1	.25				
Resista	ince to pry-out failure									
k ₈	Pryout factor:	[-]	1.0	2.0	2.0	2.0	2.0	2.0		
γinst	Robustness:	[-]			1	.0				
Resista	Ince to concrete edge failure									
lf	Effective length of anchor under shear loads:	[mm]	50	60	70	85	100	125		
dnom	Outside anchor diameter:	[mm]	10	12	16	18	24	28		
γinst	Robustness:	[-]			1	.0				

¹⁾ In absence of other national regulations

Table C8: Displacements under static and quasi-static shear loading for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

			Performances							
Displ	Displacements under shear loading		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28		
V	Service shear load in uncracked and cracked concrete C20/25 to C50/60:	[kN]	9.62	15.71	29.62	35.76	44.13	56.23		
δ _{V0}	Short term displacement:	[mm]	2.15	1.22	1.31	1.72	1.41	1.96		
δv∞	Long term displacement:	[mm]	3.23	1.83	1.96	2.58	2.11	2.93		

SLPT anchor

Performances

Annex C5

Characteristic values for shear loading

Table C9: Characteristic values to shear loads of design method A according to EN 1992-4 for SLPS, SLAS anchors

			Performances
Charac loads o A	cteristic values of resistance to of design according to design n	shear nethod	M12 Ø18
Resista	ance to steel failure under shea	r loads	
V ⁰ Rk,s	Characteristic resistance:	[kN]	74.8
k ₇	Ductility factor:	[-]	1.0
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	104.8
γMs	Partial safety factor: 1)	[-]	1.25
Resist	ance to pry-out failure		
k ₈	Pryout factor:	[-]	2.0
γinst	Robustness:	[-]	1.0
Resist	ance to concrete edge failure		
lf	Effective length of anchor under shear loads:	[mm]	68
dnom	Outside anchor diameter:	[mm]	18
γinst	Robustness:	[-]	1.0

¹⁾ In absence of other national regulations

Table C10: Displacements under static and quasi-static shear loading for SLPS, SLAS anchors

			Performances				
Dis	splacements under shear loads		M12 Ø18				
V	Service shear load in uncracked and cracked concrete C20/25 to C50/60:	[kN]	35.62				
δ _{V0}	Short term displacement:	[mm]	3.56				
δ _{V∞}	Long term displacement:	[mm]	5.33				

SLPT anchor

Performances

Annex C6

Characteristic values for shear loading

Table C11: Essential characteristics for seismic performance category C1 for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

Essential characteristics for seismic		Performances						
perform	nance category C1		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
Resista	nce to steel failure under tension	on loads						
N _{Rk,s,C1}	Characteristic tension resistance:	[kN]		29.3	46.4	67.4	126.0	196.0
γMs	Partial safety factor: 1)	[-]				1.5		
Resista	nce to steel failure under shear	loads						
V _{Rk,s,C1}	Characteristic shear resistance:	[kN]		23.1	43.6.	45.0	77.9	99.4
α _{gap}	Factor for annular gap:	[-]				0.5		
γMs	Partial safety factor: 1)	[-]				1.25		
Resista	nce to pull-out failure							
N _{Rk,p,C1}	Characteristic pull out failure:	[kN]		13.0	16.2	24.7	31.3	46.3
γinst	Robustness:	[-]		1.0	1.0	1.0	1.2	1.2
Resista	nce to concrete cone failure							
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100	125
Scr,N	Spacing:	[mm]				3 x h _{ef}		
Ccr,N	Edge distance:	[mm]				1.5 x h _{ef}		
γinst	Robustness:	[-]		1.0	1.0	1.0	1.2	1.2
					1			

¹⁾ In absence of other national regulations

Table C12: Essential characteristics for seismic performance category C1 for SLPS, SLAS anchors

Essentia	Essential characteristics for seismic		Performances					
performa	ance category C1		M12 Ø18					
Resistance to steel failure under tension loads								
NRk,s,C1	Characteristic tension resistance:	[kN]	67.4					
γMs	Partial safety factor: 1)	[-]	1.5					
Resistan	ce to steel failure under shear lo	bads						
V _{Rk,s,C1}	Characteristic shear resistance:	[kN]	44.8					
α _{gap}	Factor for annular gap:	[-]	0.5					
γMs	Partial safety factor: 1)	[-]	1.25					
Resistan	ce to pull-out failure							
NRk,p,C1	Characteristic pull out failure:	[kN]	17.6					
γinst	Robustness:	[-]	1.0					
Resistan	ce to concrete cone failure							
h _{ef}	Effective embedment depth:	[mm]	85					
Scr,N	Spacing:	[mm]	3 x h _{ef}					
Ccr,N	Edge distance:	[mm]	1.5 x h _{ef}					
γinst	Robustness:	[-]	1.0					

¹⁾ In absence of other national regulations

SLPT anchor	
Performances	Annex C7
Essential characteristics for C1 seismic performances	

Table C13: Essential characteristics for seismic performance category C2 for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

Essentia	I characteristics for seismic				Perfor	mances				
performa	ance category C2		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28		
Resistan	ce to steel failure under tension l	oads		•				•		
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]		29.3	46.4	67.4	126.0	196.0		
γMs	Partial safety factor: 1)	[-]				1.5				
Resistan	ce to steel failure under shear loa	ads					M12 Ø18 M16 Ø24 67.4 126.0 1.5			
V _{Rk,s,C2}	Characteristic shear steel failure:	[kN]		16.5	33.8	30.1	55.6	54.7		
α _{gap}	Factor for annular gap:	[-]				0.5				
γMs	Partial safety factor: 1)	[-]				1.25				
Resistan	ce to pull-out failure									
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]		6.1	12.1	21.4	34.4	40.8		
γinst	Robustness:	[-]		1.0	1.0	1.0	1.2	1.2		
Resistan	ce to concrete cone failure									
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100	125		
Scr,N	Spacing:	[mm]				3 x h _{ef}				
Ccr,N	Edge distance:	[mm]				1.5 x h _{ef}				
γinst	Robustness:	[-]		1.0	1.0	1.0	1.2	1.2		
Displace	ments									
$\delta_{N,C2 (DLS)}$	Displacement Damage Limitation	[mm]		4,7	3.4	5.9	4.0	3.9		
δ _{V C2 (DLS)}	State:	[mm]		4.9	5.2	5.8	6.0	6.1		
δ _{N,C2} (ULS)	Diaplacement Illtimate Limit States	[mm]		16.4	10.9	19.0	11.9	10.5		
δ _{V,C2} (ULS)	- Displacement Ollimate Limit State:	[mm]		8.8	9.3	9.4	13.0	9.2		
1)	In absence of other national regulations	2								

In absence of other national regulations

Table C14: Essential characteristics for seismic performance category C2 for SLPS, SLAS anchors

Essential characteristics for seismic			Performances	
performa	nce category C2		M12	
			Ø18	
Resistan	ce to steel failure under tension l	oads		
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]	67.4	
γMs	Partial safety factor: 1)	[-]	1.5	
Resistan	ce to steel failure under shear loa	ads		
V _{Rk,s,C2}	Characteristic shear steel failure:	[kN]	29.9	
α_{gap}	Factor for annular gap:	[-]	0.5	
γMs	Partial safety factor: 1)	[-]	1.25	
Resistan	ce to pull-out failure			
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]	12.6	
γinst	Robustness:	[-]	1.0	
Resistan	ce to concrete cone failure			
h _{ef}	Effective embedment depth:	[mm]	85	
Scr,N	Spacing:	[mm]	3 x h _{ef}	
Ccr,N	Edge distance:	[mm]	1.5 x h _{ef}	
γinst	Robustness:	[-]	1.0	
Displace	ments			
$\delta_{N,C2 (DLS)}$	Displacement Damage Limitation	[mm]	5.9	
δ _{V C2 (DLS)}	State:	[mm]	5.8	
δ _{N,C2} (ULS)	Displacement I Iltimate Limit State	[mm]	19.0	
δ _{V,C2} (ULS)	- Displacement Ollimate Limit State.	[mm]	9.4	
	1) In absence of other national regula	ations		
SLPT and	hor			
•erformar	nces			Annex C8

Essential characteristics for C2 seismic performances

Table C15: Characteristic values for resistance under fire exposure for SLPT, SLAT, SLPC, SLAC, SLPE, SLAE anchors

						Perform	nances		
Charact	eristic values under fire	exposur	e	M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
Fire res	istance to steel failure								
		R30	[kN]	0.2	0.4	0.9	1.7	3.1	4.9
NI0-, "	Characteristic tension	R60	[kN]	0.2	0.3	0.8	1.3	2.4	3.7
IN [°] Rk,s,fi	resistance:	R90	[kN]	0.1	0.3	0.6	1.1	2.0	3.2
		R120	[kN]	0.1	0.2	0.5	0.8	1.6	2.5
		R30	[kN]	0.2	0.4	0.9	1.7	3.1	4.9
	Characteristic shear	R60	[kN]	0.2	0.3	0.8	1.3	2.4	3.7
V *Rk,s,fi	resistance:	R90	[kN]	0.1	0.3	0.6	1.1	2.0	3.2
		R120	[kN]	0.1	0.2	0.5	0.8	1.6	2.5
		R30	[Nm]	0.2	0.4	1.1	2.6	6.7	13.0
M ⁰ DL = 6	Characteristic bending	R60	[Nm]	0.1	0.3	1.0	2.0	5.0	9.7
IVI KK,S,TI	resistance:	R90	[Nm]	0.1	0.3	0.7	1.7	4.3	8.4
		R120	[Nm]	0.1	0.2	0.6	1.3	3.3	6.5
Fire res	istance to pull-out failu	re							
N ⁰ Rk p fi	Characteristic resistance:	R30 to R90	[kN]	3.0	4.8	7.1	11.5	17.2	30.1
		R120	[kN]	2,4	3.8	5.6	1.3 3.3 11.5 17.2 9.2 13.8	24.1	
Fire res	istance to concrete con	e failure [*]	1)						
NORk _{,c,fi}	Characteristic resistance:	R30 R60 R90	[kN]	3.0	4.8	7.1	11.5	17.2	30.1
		R120	[kN]	2.4	3.8	5.6	9.2	13.8	24.1
Scr.N,fi	Spacing:	R30 to R120	[mm]			4 x	t h _{ef}		
Ccr.N,fi	Edge distance:	R30 to R120	[mm]			2 x	t h _{ef}		
Smin,fi	Minimum spacing:	R30 to R120	[mm]	100	120	175	200	220	320
C min,fi	Minimum edge distance:	R30 to R120	[mm]	$c_{min} = 2 x$ edge dista	h _{ef} ; if fire a ance of the	ttack come anchor ha	es from mor as to be ≥ 3	e than one 00 mm and	side, the d ≥ 2 x h _{ef}
Fire res	istance to concrete pry-	out failur	е						
k ₈	Pryout factor:	R30 to R120	[-]	1.0	2.0	2.0	2.0	2.0	2.0
1)	As a rule, splitting failure	e can be ne	eglected	since cracl	ked concre	te and reir	forcement	is assumed	d.

1) As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed. 2) In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ =

1,0 is recommended

SLPT anchor

Performances

Characteristic values under fire exposure

Table C16: Characteristic values for resistance under fire exposure for SLPS, SLAS anchors

Characteristic values under fire exposure				Performances M12 Ø18		
Fire res	istance to steel failure					
		R30	[kN]	1.7		
N ⁰ Rk,s,fi	Characteristic tension resistance:	R60	[kN]	1.3		
		R90	[kN]	1.1		
		R120	[kN]	0.8		
V ⁰ Rk,s,fi	Characteristic shear resistance:	R30	[kN]	1.7		
		R60	[kN]	1.3		
		R90	[kN]	1.1		
		R120	[kN]	0.8		
M ⁰ Rk,s,fi	Characteristic bending resistance:	R30	[Nm]	2.6		
		R60	[Nm]	2.0		
		R90	[Nm]	1.7		
		R120	[Nm]	1.3		
Fire res	istance to pull-out failu	re	[]			
N ⁰ Rk,p,fi	Characteristic resistance:	R30 to	[LN]	6.6		
		R90	נגואן	0.0		
		R120	[kN]	5.3		
Fire res	istance to concrete con	e failure	1)			
N ⁰ Rk,c,fi	Characteristic resistance:	R30)) [kN]	6.56		
		R60				
		R90 P120	[kN]	5.25		
		R30 to		5.25		
Scr.N,fi	Spacing:	R120	[mm]	4 x h _{ef}		
Ccr.N,fi	Edge distance:	R30 to	[mm]	2 x h _{ef}		
		R120				
Smin,fi	Minimum spacing:	R30 to R120	[mm]	205		
_	Minimum edge distance:	R30 to	[]	$c_{min} = 2 \times h_{ef}$; if fire attack comes from more than one side, th edge distance of the anchor has to be $\geq 300 \text{ mm and } \geq 2 \times h_{ef}$		
Cmin,fi		R120	fuuul			
Fire res	istance to concrete pry-	out failu	re			
k ₈	Pryout factor:	R30 to	[-]	2.0		
1) 2)	As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed. In absence of other national regulations the partial safety factor for resistance under fire exposure γm 1,0 is recommended					
.PT and	chor					
erforma	ances				Annov (
					Annex	

Characteristic values under fire exposure