

MT
CHEVILLES MÉTALLIQUES
Guide technique

INTRODUCTION

INDEX Fixing Systems met à votre disposition un nouveau guide technique qui vous permettra de développer vos connaissances sur la fixation.

La fixation d'éléments à l'aide de **chevilles métalliques** offre une infinité de possibilités selon l'objectif recherché. Des critères tels que la qualité, les homologations ou encore les revêtements, permettent de choisir la cheville appropriée pour obtenir les résultats souhaités.

Le but de ce manuel est de vous faire connaître les principes basiques de fonctionnement de notre gamme de chevilles mâles MT, et éventuellement enrichir vos connaissances afin que vous puissiez à tout moment choisir la solution adéquate à chaque besoin. Ce guide a été conçu pour venir en aide aux responsables de projets, aux architectes, aux ingénieurs civils et aux ingénieurs de la construction dans leur travail quotidien : aussi bien pour la conception et calcul de projets que pour l'installation correcte de ceux-ci. À l'aide de cette information, vous pourrez, de façon rapide et concise, apporter une solution aux problèmes qui surviennent dans vos tâches quotidiennes.

De plus, INDEX Fixing Systems souhaite souligner l'importance et la responsabilité que supposent le calcul et l'installation d'une cheville sur une structure, un pont, ou toute autre application. Toutes les étapes de l'étude doivent être menées avec une **rigueur extrême** et les connaissances techniques appropriées. Il est de la responsabilité des professionnels de choisir correctement la cheville indiquée pour chaque situation particulière.

Tous les produits devront s'installer conformément à l'information ici présente pour qu'ils puissent vous offrir les performances recueillies dans le présent document.

Nous remercions nos clients, utilisateurs et personnel interne pour leur aide et collaboration car grâce à eux nous avons pu élaborer ce nouveau manuel qui, nous l'espérons, vous sera d'un grand soutien dans votre vie professionnelle.

Service. Technique INDEX Fixing Systems

Chez **INDEX**® nous sommes fabricants et fournisseurs industriels de systèmes de fixation et nous proposons des solutions globales adaptées aux besoins de votre activité.

MAIS NOUS ALLONS BIEN AUDELÀ. NOUS SOMMES UNE ÉQUIPE QUI MISE SUR LA RECHERCHE, LE DÉVELOPPEMENT ET L'INNOVATION DE FAÇON CONTINUE ET, POURQUOI NE PAS LE DIRE, UN PEU OBSTINÉS À ATTEINDRE NOTRE OBJECTIF: OBTENIR UNE FIXATION PARFAITE.

Quelle que soit la taille de votre activité, chez **INDEX**® nous chercherons la fixation qu'il vous faut.

Voici quelques-unes des raisons qui expliquent pourquoi

INDEX® MARQUE LA DIFFÉRENCE

DISPONIBILITÉ ET VASTE GAMME DE PRODUITS

Plus de 10 000 références avec un stock permanent assuré.

NOUS TRAVAILLONS AVEC LE CANAL DISTRIBUTEUR

Nous vendons à travers le canal distributeur, ce qui nous permet de connaître le marché de première main.

NOUS SOMMES FABRICANTS EXPERTS

Nous sommes riches d'une expérience de plus de 30 années en tant que fabricants de systèmes de fixation, ce qui nous permet de garantir la qualité maximale de nos produits et le meilleur service à un coût global compétitif.

QUALITÉ CERTIFIÉE

Nous possédons les principaux certificats et homologations et nous vérifions que tous nos produits remplissent les plus hauts standards de qualité.

PRÉSENCE INTERNATIONALE

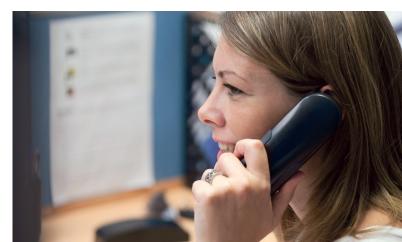
Nous sommes une entreprise globale, avec des ventes dans plus de 90 pays distribués sur les cinq continents et avec des installations en Espagne, en Chine et au Mexique.

SERVICES D'INGÉNIERIE ET SUPPORT TECHNIQUE

Nous soutenons nos clients et leurs propres clients dans la phase de conception et de calcul de fixations, les visites conjointes des ouvrages et les formations techniques sur les aspects associés au secteur de la fixation.

SERVICE CLIENTÈLE DE QUALITÉ

Nos clients sont notre priorité. Nous possédons une équipe de 300 personnes à votre service.



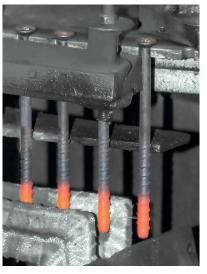
INDEX SPACE ESTUDIO

Quelle que soit votre activité, nous avons la solution qu'il vous faut.

DISPONIBILITÉ ET VASTE GAMME DE PRODUITS

Nous sommes spécialistes en ancrages, vis, colliers de serrage, systèmes d'installation, etc. Nous disposons de la gamme de produits la plus vaste, avec plus de 10 000 références et un stock permanent garanti dans nos installations en Espagne, en Chine et au Mexique (plus de 45 000 m²).

NOUS AVONS TOUT
CE DONT VOUS
AVEZ BESOIN DANS
LE DOMAINE DE
LA FIXATION ET
NOUS MISONS SUR
L'INCORPORATION
PERMANENTE DE
NOUVEAUX PRODUITS:
ancrages, vis, colliers
de serrage, systèmes
d'installation, etc.



NOUS SOMMES FABRICANTS EXPERTS

Nous contrôlons la totalité du processus productif et notre expérience de plus de 30 années en tant que fabricants de systèmes de fixation, nous permet de vous garantir la qualité maximale de nos produits et le meilleur service à un coût global compétitif.

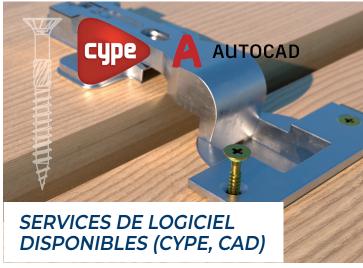
SERVICES D'INGÉNIERIE ET SUPPORT TECHNIQUE

Nous vous proposons un service d'assistance technique à travers une équipe d'ingénieurs spécialisés. Nous possédons un service S.A.T, notre propre logiciel spécialisé et une documentation technique extrêmement complète.

Et, le plus important, une équipe qui vous soutiendra pendant la conception, le calcul de fixations, la visite au chantier et les formations techniques sur tous les aspects concernant l'univers de la fixation.

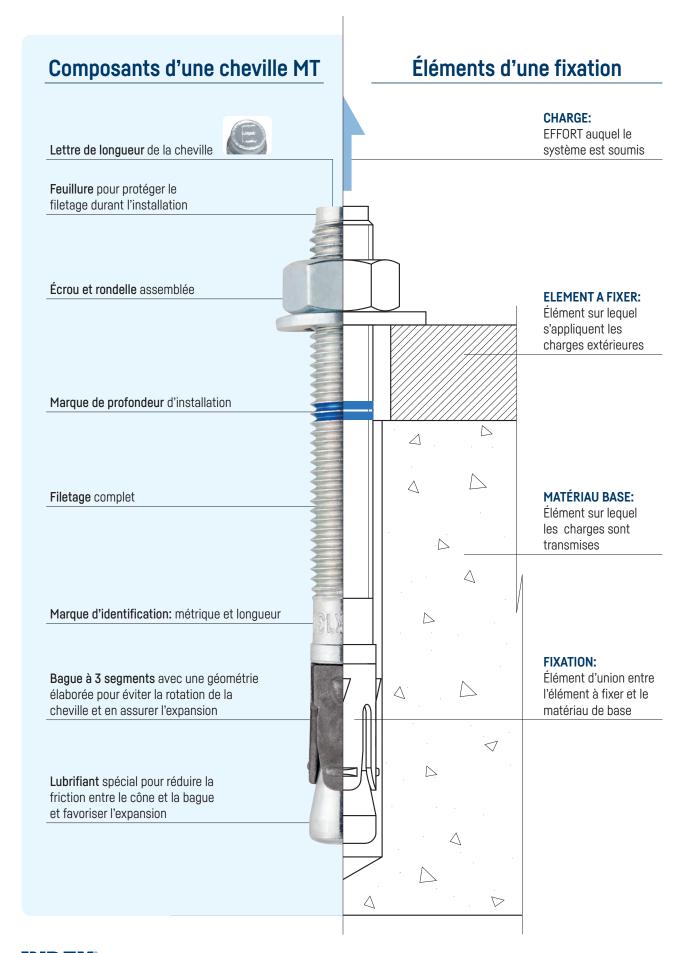
LOGICIEL SPÉCIALISÉ

Nous possédons le logiciel qui s'adapte le mieux à vos besoins dans chaque cas concret.


INDEXcal, logiciel pour le calcul d'ancrages et la conception de solutions structurelles.

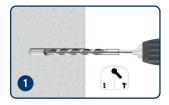
INDEXwood, logiciel pour la conception et le calcul de structures en bois.

INDEXmor, outil en ligne qui permet de calculer le nombre de cartouches chimiques nécessaires en fonction de différents paramètres.

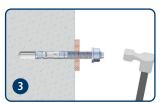


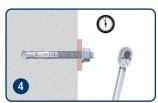
Caractéristiques du goujon d'ancrage MT

Ce qui caractérise le goujon MT c'est sa **bague expansive.** L'expansion de celle-ci se produit pendant l'application du couple de serrage du fait de la forme conique de la tige du goujon et, exerce en même temps une pression sur la paroi interne du trou provoquant le frottement et permmettant ainsi la fixation.


Principaux avantages de cette cheville:

- Rapidité d'utilisation, en effet, l'ancrage peut être soumis à charge immédiatement après son installation.
- · Hautes valeurs de résistance.
- Economie et simplicité de la fixation.
- Flexibilité quant aux diamètres et longueurs disponibles.


Pour une correcte installation du goujon, tenir compte des indications suivantes:


Aspects critiques de cette cheville:

- S'assurer que l'expansion se produira correctement en installant le couple de serrage recommandé par le fabricant.
- Utiliser une clé dynamométrique calibrée disposant d'une plage du couple de serrage adéquate.
- S'assurer que les conditions d'installation et de nettoyage correspondent à celles recommandées.

Processus d'installation d'un goujon d'ancrage MT:

- 1 PERCER: Vérifier que le béton est bien compact et sans pores significatifs. Approprié pour des perçages secs, humides, ou inondés. Perçage mode percussion ou marteau. Percer au diamètre et à la profondeur spécifiés.
- 2 SOUFFLER ET NETTOYER: Nettoyer le trou des restes de poussière et de débris du perçage. Utiliser pompe de soufflage et écouvillon.
- 3 INSTALLER: Insérer le goujon jusqu'à ce que la marque de profondeur vienne à ras de la superficie du support. Employer un marteau si nécessaire. Utiliser alternativement l'outil de pose DOMTA. L'installation peut se faire à travers le matériau à fixer ou préalablement à la pose de celui-ci.
- 4 APPLIQUER LE COUPLE DE SERRAGE: Appliquer le couple de serrage nominal à l'aide d'une clé dynamométrique. L'installation faite, on peut vérifier la longueur totale de l'ancrage grâce à la lettre sur l'extrémité de la tige correspondant aux valeurs de l'ETA.

RÈGLEMENTATION (Homologations)

MARQUAGE CE

Le **marquage CE** Le marquage CE est la voie à travers laquelle le fabricant déclare que les produits sont conformes aux conditions basiques des ouvrages.

La réglementation concernant les produits de construction est recueillie dans le "Reglamento de Productos de la Construcción 305/2011" (Construction Products Regulation, CPR) (Réglementation des Produits de Construction), où sont établies les conditions basiques dont ces produits doivent être pourvus concernant:

- · Résistance mécanique et la stabilité.
- Sécurité en cas d'incendie.
- Hygiène, santé et environnement.
- Sécurité d'utilisation et accessibilité
- · Protection contre le bruit.
- Économie d'énergie et isolement thermique.
- · Utilisation durable des ressources naturelles.

EOTA

ETA

Le CPR établit le Document d'Évaluation Européen DET 330232-00-0601 (fixations mécaniques sur béton), où sont indiqués les essais nécessaires et les critères d'évaluation à appliquer pour obtenir, de manière volontaire, une **Évaluation Technique Européenne (ETA).** C'est à partir de cette évaluation que **le fabricant devra émettre, sous sa responsabilité, la Déclaration des Performances et appliquer le marquage CE sur les produits de construction. L'évaluation européenne est réalisée par un Organisme d'Évaluation Technique appartenant à l'EOTA (European Organization for Technical Approvals).**

Le Eurocode 2 [EN 1992-4] - Calcul des structures en béton - Partie 4 : Conception et calcul des éléments de fixation pour béton à son tour, établit la méthode de calcul des chevilles basée sur 12 options d'homologation en fonction du type de béton, sa résistance et la méthode de calcul.

Les options d'évaluation les plus usuelles sur le marché sont:

• Option 1 pour une utilisation des chevilles sur du béton fissuré et non fissuré.

- Option 7 pour une utilisation des chevilles sur du béton non fissuré.

OPTIONS D'HOMOLOGATION

Option	Fissuré	Non fissuré	Resistance unique pour toute classe de béton	Resistance individualisée pour chaque béton	Resistance unique pour toute direction	Resistance individualisée pour charges de traction et cisaillement	Valeurs reduites pour distances au bord et entre chevilles	Méthode de calcul selon a prEN 1992-4 [16]
1			Х	√	X	,		A
2			√	X	^	V	,	A
3	,	,	X	√			V	В
4	V	V	√	X	,	X		Б
5			X	√		^	X	С
6			√	X			^	C
7			X	√	X	,		А
8			√	X	^	V	,	A
9	X	,	X	√			V	В
10	^	√	√	X	,	X		D
11			X	√	V	X	v	6
12			√	Х			X	С

Certaines chevilles disposent d'une **homologation pour charges sismiques**. Pour des applications sismiques, les fixations sont calculées conformément à la méthode inclue dans le TR045. Ce guide de calcul établit, selon l'activité sismique, différentes zones et classes d'édifications. Selon cette classification, on parlera de **catégorie C1 ou C2**. Brièvement, la catégorie C1 s'utilise pour des applications non structurelles alors que la catégorie C2 concerne les applications structurelles

Pour des applications **exposées au feu,** les fixations sont calculées conformément à la méthode établie dans le TR020 "Evaluation des fixations sur béton relative à leur résistance au feu".

Cette évaluation concerne les fixations sur béton standards avec une résistance d'au moins C20/25 et d'au moins C50/60 pour des fixations sur des structures normales exposées au feu.

L'estimation de la durée de résistance au feu s'établit selon les conditions données dans le EN 1363-1:1999-10 en utilisant la "Courbe de température standard/temps".

En général, la durée de la résistance au feu des fixations dépend principalement de la configuration de la structure elle-même (matériaux de base, chevilles et matériau à fixer).

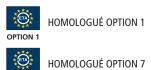
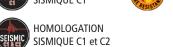
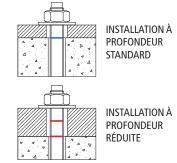


TABLEAU DE SÉLECTION

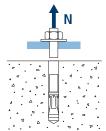


OPTION 7

TABLEAU DE SÉLECTION


MATÉRIAI			REVÊTI	EMENT		R À L	ÉSISTANC A CORROS	E IÓN	PROFONDEUR D'INSTALLATION		
			ZINC	ATLANTIS	A2 INOX AISI 304	A4 INOX AISI 316	•	•	•		
•	•	•					•			•	
•	•	•					•			•	
•	•	•						•		•	
•	•	•							•	•	
•	•	•							•	•	
•	•	•					•			•	•
•	•	•							•	•	•
•	•	•							•	•	•
•	•	•							•	•	•

INOXYDABLE A4

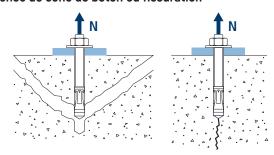


TYPES D'ÉCHEC D'UNE FIXATION MÉCANIQUE

Dans ce document, différents aspects techniques de la fixation sont spécifiés. Sont également déterminés, différentes situations dans lesquelles un ancrage correctement installé peut échouer. Ci après l'explication des principaux échecs qui peuvent survenir **et pourquoi** ils surviennent.

On les différencie en fonction des charges auxquelles les chevilles sont soumises. Ainsi, les échecs sont classés entre ceux soumis à une charge de traction et ceux soumis à une charge de cisaillement.

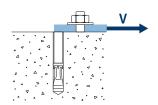
TRACTION


Il se produit lorsqu'une cheville est soumise à une charge de traction supérieure à la résistance de l'acier. La rupture se produit au niveau de la zone de la bague donc une partie de la cheville restera à l'intérieur du trou d'installation alors que l'autre partie, celle avant la bague, tombera.

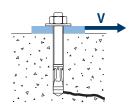
Échec par arrachement

Échec de l'acier

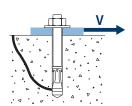
Il se produit quand la charge appliquée à la cheville est supérieure à la force de friction entre la bague et la face interne du béton, ce qui provoque l'arrachement de la cheville.


Échec de cône de béton ou fissuration

Il a lieu lorsqu'une cheville est soumise à une charge de traction supérieure à la résistance du béton. Il se produit alors une rupture du matériau de base en forme de cône inversé. Dans certains cas, il se produit une fissure dans le matériau base qui annule la capacité de fixation de la cheville.


CISAILLEMENT

Échec de l'acier sans bras de levier


Il se produit lorsqu'une cheville est soumise à une charge de cisaillement supérieure à la résistance de l'acier. La rupture se produit au niveau de la superficie du matériau base.

Échec du bord de béton

Il se produit quand la charge qui s'applique à la cheville est causée par la rupture du béton survenue entre le bord de celui-ci et la cheville.

Échec par écaillage

Il se produit lorsque la charge qui s'applique à la cheville provoque un écaillage dans la zone neutre du matériau de base où s'applique l'effort de rupture.

Cheville à expansion par couple contrôlé à utiliser dans le béton fissuré et non fissuré

Homologué ETA Option 1. Axe zingué. Bague Inoxydable A4.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée, à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0053.
- ETA 12/0397 option 1.
- · Déclaration des performances DoP MTP.

DIMENSIONS

M8x50 à M24x235.

PLAGE DE CHARGE DE CALCUL

De 5,0 à 30,6 kN (non fissuré). De 2,8 à 19,4 kN (fissuré).

MATÉRIAU BASE

Béton de qualité C20/25 à C50/60 fissuré ou non fissuré.

Béton armé

HOMOLOGATIONS

- Option 1 (béton fissuré ou non fissuré).
- Résistance au feu R30-120
- Sismique C1 M10÷M16
- Sismigue C2 M12÷M16

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré ou non fissuré.
- · Apte pour charges moyennes-élevées.
- Installation préalable ou bien à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour des charges statiques ou quasi-statiques.
- Disponible sur INDEXcal.

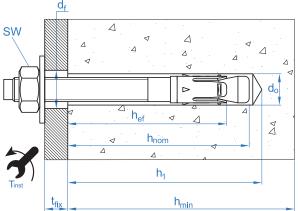
MATÉRIAUX

Tige: Acier estampé à froid zingué $\geq 5 \mu m$. Rondelle: DIN 125 ou DIN 9021, zingué $\geq 5 \mu m$. Écrou: DIN 934, zingué $\geq 5 \mu m$.

Bague: Acier inoxidable A4.

APPLICATIONS

- · Plaques d'ancrage.
- · Structures métalliques.
- · Ponts.
- Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- · Ascenseurs.
- · Supports de tuyauteries



	PROPRIÉTÉS MÉCANIQUES													
			M8	M10	M12	M16	M20	M24						
		Section of	dans la zone	du cône										
A_s	(mm²)	Section dans la zone du cône	22,9	41,8	55,4	103,9	176,7	298,6						
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	790	750	730	700	660	600						
$f_{y,s}$	(N/mm²)	Limite élastique	632	600	585	560	530	480						
		Section	dans la zon	e filetée										
A_s	(mm²)	Section dans la zone filetée	36,6	58,0	84,3	157,0	245,0	353,0						
$f_{u,s}$	(N/mm²) Résistance caractéristique à la traction			600	600	600	600	600						
f _{y,s}	f _{y,s} (N/mm²) Limite élastique			480	480	480	480	480						

DONNÉES D'INSTALLATION													
MÉTRIQU	JE		M8	M10	M12	M16	M20	M24					
Code			AP08XXX	AP10XXX	AP12XXX	AP16XXX	AP20XXX	AP24XXX					
d _o	Diamètre du foret	[mm]	8	10	12	16	20	24					
T _{ins}	Couple d'installation	[Nm]	20	40	60	100	200	250					
$d_f \le$	Diamètre du filetage sur la plaque à fixer	[mm]	9	12	14	18	22	26					
h ₁	Profondeur minimale du perçage	[mm]	60	75	85	105	125	155					
h _{nom}	Profondeur d'installation	[mm]	55	68	80	97	114	143					
h _{ef}	Profondeur effective	[mm]	48	60	70	85	100	125					
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	120	140	170	200	250					
t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 66	L - 80	L - 96	L - 117	L-138	L-170					
S _{cr,N}	Distance critique entre chevilles	[mm]	144	180	210	255	300	375					
C _{cr,N}	Distance critique au bord	[mm]	72	90	105	128	150	188					
S _{cr,sp}	Distance critique à fissuration	[mm]	288	300	350	425	500	560					
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	144	150	175	213	250	280					
S _{min}	Distance minimale entre chevilles	[mm]	40 55	40 70	60 75	65 95	95 105	125 125					
C _{min}	Distance minimale au bord	[mm]	45 55	45 90	55 110	70 115	95 105	125 125					
SW	Clé d'installation		13	17	19	24	30	30					

 $^*L =$ Longueur totale de la cheville

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
0	2	3
4	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}																
			TRAC	TION							(ISAILL	EMENT				
Métrique M8 M10 M12 M16 M20 M24						Métrique		M8	M10	M12	M16	M20	M24				
N_{Rk}	Béton non fissuré	[kN]	9,0	18,0	20,0	36,0	48,0	55,0	V_{Rk}	V _{Rk} Béton non fissuré [11,0	17,4	25,3	47,1	73,1	84,7
N _{Rk} Béton fissuré [kN] 5,0 9,5 12,0 25,0 32,0 35,0			V_{Rk}	Béton fissuré	[kN]	11,5	17,4	25,3	53,9	68,8	96,2						

	Résistance de calcul N _{Rd} y V _{Rd}																
			TRAC	TION							(ISAILL	EMENT				
	Métrique M8 M10 M12 M16 M20 M24							M24		Métrique		M8	M10	M12	M16	M20	M24
N_{Rd}	Béton non fissuré	[kN]	5,0	12,0	13,3	24,0	32,0	30,6	V_{Rd}	V _{Rd} Béton non fissuré [kN		8,8	13,9	20,2	37,7	58,5	67,8
N _{Rd} Béton fissuré [kN] 2,8 6,3 8,0 16,7 21,3 19,4			$V_{\rm Rd}$	Béton fissuré	[kN]	7,6	13,9	20,2	35,9	45,9	64,1						

	Charge maximale recommandée N _{rec} y V _{rec}																
			TRAC	TION							(CISAILL	EMENT				
Métrique M8 M10 M12 M16 M20 M24						Métrique		M8	M10	M12	M16	M20	M24				
$N_{\rm rec}$	Béton non fissuré	[kN]	3,6	8,6	9,5	17,1	22,9	21,8	V _{rec} Béton non fissuré [kl		[kN]	6,3	9,9	14,5	26,9	41,8	48,4
$N_{\rm rec}$	N _{rec} Béton fissuré [kN] 2,0 4,5 5,7 11,9 15,2 13,9		$V_{\rm rec}$	Béton fissuré	[kN]	5,4	9,9	14,5	25,7	32,8	45,8						

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 12/0397

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 12/0397.

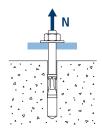
- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

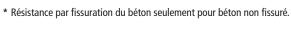
INDEXcal

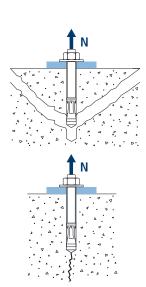
Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix. com

CHARGES DE TRACTION


• Résistance de calcul de l'acier:

 $\begin{array}{ll} \cdot \text{ R\'esistance de calcul par arrachement:} & N_{\text{Rd},p} &= N^{\circ}_{\text{Rd},p} \cdot \Psi_{\text{c}} \\ \cdot \text{ R\'esistance de calcul par c\^one de b\'eton:} & N_{\text{Rd},c} &= N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}} \\ \cdot \text{ R\'esistance de calcul par fissuration du b\'eton:} & N_{\text{Rd},sp} &= N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}} \\ \end{array}$

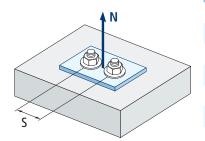

Résistance de calcul de l'acier													
N _{Rd,s}													
Métrique	M8	M10	M12	M16	M20	M24							
N° Rd [[kN] 12,1	20,9	26,9	48,5	77,7	119,5							



	Résistance de calcul par arrachement													
			$N_{Rd,p} =$	$N^o_{Rd,p} \cdot \Psi_o$:									
	Métrique		M8	M10	M12	M16	M20	M24						
$N^{\circ}_{Rd,p}$	Béton non fissuré	[kN]	5,00	12,00	13,33	24,00	32,00	30,6						
$N^{o}_{Rd,p}$	Béton fissuré	[kN]	2,78	6,33	8,00	16,67	21,33	19,4						

	Résistance de calcul par cône de béton													
	$N_{Rd,c} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$													
	Résistance de calcul par fissuration du béton*													
	$N_{Rd,sp} = N_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$													
	Métrique M8 M10 M12 M16 M20 M24													
$N^{o}_{Rd,c}$	N° _{Rd,c} Béton non fissuré [kN] 9,1 15,2 19,2 25,7 32,8 38,2													
$N^o_{\text{Rd,c}}$	d,c Béton fissuré [kN] 6,4 10,7 13,5 18,0 23,0 26,7													

Coefficients d'influence

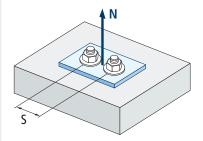


	Influence de la résistance du béton pour arrachement Ψ_{ϵ}											
		M8 M10		M12	M16	M20	M24					
	C 20/25	1,00										
w	C 30/37	1,22	1,17	1,22	1,22	1,17	1,22					
Ψ _c	C 40/50	1,41	1,31	1,41	1,41	1,31	1,41					
	C 50/60	1,58	1,43	1,58	1,58	1,43	1,58					

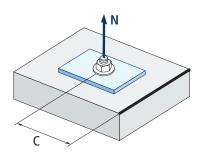
< ✓,	V. V. 4 V. 4 V.
Δ	
• -	· ^ \ \ \ .
Δ.	
4	· · · · · · · · · · · · · · · · · · ·
. △	
	P . D . Q . Q . Q . Q

Influer	Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{b}}$										
		M8	M10	M12	M16	M20	M24				
	C 20/25	1,00									
	C 30/37	1,22									
Ψ_{b}	C 40/50	1,41									
	C 50/60			1,	58						

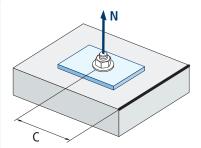
$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$



$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

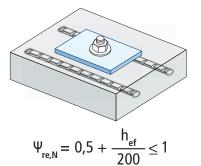

	Influen	ce distance e	ntre chevilles	(cône de bét	on) Ψ _{s N}				
				ТР	3,11				
s [mm]	M8	M10	M12	M16	M20	M24			
40	0,64	0,61							
50	0,67	0,64							
55	0,69	0,65		Vale	eurs non adm	ises			
60	0,71	0,67	0,64						
65	0,73	0,68	0,65	0,63					
70	0,74	0,69	0,67 0,64						
80	0,78	0,50	0,50	0,66					
85	0,80	0,74	0,70	0,67					
90	0,81	0,75	0,71	0,68					
95	0,83	0,76	0,73	0,69	0,66				
100	0,85	0,78	0,74	0,70	0,67				
105	0,86	0,79	0,75	0,71	0,68				
110	0,88	0,81	0,76	0,72	0,68				
120	0,92	0,83	0,79	0,74	0,70				
125	0,93	0,85	0,80	0,75	0,71	0,67			
126	0,94	0,85	0,80	0,75	0,71	0,67			
128	0,94	0,86	0,80	0,75	0,71	0,67			
130	0,95	0,86	0,81	0,75	0,72	0,67			
135	0,97	0,88	0,82	0,76	0,73	0,68			
144	1,00	0,90	0,84	0,78	0,74	0,69			
150		0,92	0,86	0,79	0,75	0,70			
165		0,96	0,89	0,82	0,78	0,72			
170		0,97	0,90	0,83	0,78	0,73			
180		1,00	0,93	0,85	0,80	0,74			
195			0,96	0,88	0,83	0,76			
200			0,98	0,89	0,83	0,77			
210			1,00	0,91	0,85	0,78			
220				0,93	0,87	0,79			
225				0,94	0,88	0,80			
252				0,99	0,92	0,84			
255				1,00	0,93	0,84			
260					0,93	0,85			
300		Valeurs sans	réduction = 1		1,00	0,90			
309									
310									
375						1,00			

	Influe	nce distance	entre cheville	es (fissuration	η) Ψ _{s,sp}			
- []				ТР				
s [mm]	M8	M10	M12	M16	M20	M24		
40	0,57	0,57						
50	0,59	0,58						
55	0,60	0,59		Vale	eurs non adm	ises		
60	0,60	0,60	0,59					
65	0,61	0,61	0,59	0,58				
70	0,62	0,62	0,60 0,58					
80	0,64	0,63	0,61	0,59				
85	0,65	0,64	0,62	0,60				
90	0,66	0,65	0,63	0,61				
95	0,66	0,66	0,64	0,61	0,60			
100	0,67	0,67	0,64	0,62	0,60			
110	0,69	0,68	0,66	0,63	0,61			
125	0,72	0,71	0,68	0,65	0,63	0,61		
128	0,72	0,71	0,68	0,65	0,63	0,61		
135	0,73	0,73	0,69	0,66	0,64	0,62		
140	0,74	0,73	0,70	0,66	0,64	0,63		
150	0,76	0,75	0,71	0,68	0,65	0,63		
160	0,78	0,77	0,73	0,69	0,66	0,64		
165	0,79	0,78	0,74	0,69	0,67	0,65		
168	0,79	0,78	0,74	0,70	0,67	0,65		
180	0,81	0,80	0,76	0,71	0,68	0,66		
192	0,83	0,82	0,77	0,73	0,69	0,67		
200	0,85	0,83	0,79	0,74	0,70	0,68		
210	0,86	0,85	0,80	0,75	0,71	0,69		
220	0,88	0,87	0,81	0,76	0,72	0,70		
260	0,95	0,93	0,87	0,81	0,76	0,73		
280	0,99	0,97	0,90	0,83	0,78	0,75		
288	1,00	0,98	0,91	0,84	0,79	0,76		
300		1,00	0,93	0,85	0,80	0,77		
336			0,98	0,90	0,84	0,80		
350			1,00	0,91	0,85	0,81		
360				0,92	0,86	0,82		
412				0,98	0,91	0,87		
425		0,88						
500	Valeur	s sans réduct	ion = 1		1,00	0,95		
510						0,96		
560						1,00		

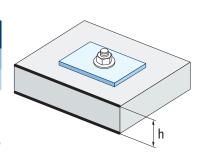

$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsp}} + \frac{0.15 \cdot c^2}{C_{crsp}^2} \le 1$$

	Influen	ce distance a	u bord du bé	ton (fissuratio	on) Ψ _{c,sp}					
				TP						
c [mm]	M8	M10	M12	M16	M20	M24				
45	0,52	0,51								
50	0,54	0,53								
55	0,56	0,55	0,52	Vale	eurs non adm	ises				
60	0,58	0,57	0,54							
65	0,61	0,59	0,56							
70	0,63	0,62	0,57	0,53						
75	0,65	0,64	0,59	0,54						
80	0,67	0,66	0,61	0,56						
83	0,69	0,67	0,62	0,57						
84	0,69	0,68	0,62	0,57						
85	0,70	0,68	0,63	0,57						
90	0,72	0,70	0,65	0,59						
95	0,75	0,73	0,67	0,60	0,56					
100	0,77	0,75	0,68	0,62	0,57					
105	0,79	0,77	0,70	0,63	0,59					
110	0,82	0,80	0,72	0,65	0,60					
125	0,90	0,87	0,78	0,70	0,64	0,60				
128	0,91	0,89	0,80	0,70	0,65	0,61				
130	0,92	0,90	0,80	0,71	0,65	0,61				
135	0,95	0,92	0,82	0,73	0,66	0,63				
140	0,98	0,95	0,85	0,74	0,68	0,64				
144	1,00	0,97	0,86	0,76	0,69	0,65				
150		1,00	0,89	0,78	0,70	0,66				
168			0,97	0,84	0,75	0,70				
175			1,00	0,86	0,77	0,72				
180				0,88	0,79	0,73				
206				0,97	0,86	0,80				
213				1,00	0,88	0,82				
250	Valeur	s sans réducti	ion = 1		1,00	0,92				
255						0,93				
280						1,00				


	Influence	e distance au	bord du béto	n (cône de be	éton) Ψ _{c,N}				
c [mm]			M	ТР					
C [mm]	M8	M10	M12	M16	M20	M24			
40	0,67	0,60							
50	0,77	0,67							
53	0,80	0,70		Vale	eurs non adm	ises			
60	0,87	0,75	0,68						
63	0,90	0,77	0,70						
65	0,92	0,79	0,72	0,64					
70	0,98	0,83	0,75	0,67					
72	1,00	0,85	0,76	0,68					
75		0,87	0,78	0,69					
80		0,91	0,82	0,72					
83		0,94	0,84	0,74					
85		0,96	0,85	0,75					
90		1,00	0,89	0,78					
95			0,93	0,80	0,73				
100			0,96	0,83	0,75				
105			1,00	0,86	0,77				
110				0,89	0,80				
113				0,91	0,81				
125				0,98	0,87	0,75			
126				0,99	0,88	0,75			
128				1,00	0,89	0,76			
135					0,92	0,79			
150	,	Valeurs sans	réduction = 1		1,00	0,84			
155						0,86			
188						1,00			

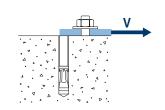
$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$


Influence d'armature Ψ _{re,N}										
			M	TP						
Ψ re,N	M8	M10	M12	M16	M20	M24				
-7.1	0,74	0,80	0,85	0,93	1,00	1,00				

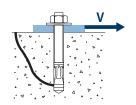
^{*}Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart \geq 150 mm (n'importe quel diamètre) ou un diamètre \leq 10 mm et un écart \geq 100 mm, on pourra appliquer un facteur $f_{r_{e,N}}=1$

Influence de l'épaisseur du matériau de base Ψ _{h,sp}											
						MTP					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
	$\Psi_{h sn}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

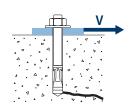

CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,V_{{\rm Rd},s}\,$


 Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$

Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

Résistance de calcul de l'acier sans bras de levier										
$V_{Rd,s}$										
Métrique		M8	M10	M12	M16	M20	M24			
$V_{Rd,s}$	[kN]	8,8	13,9	20,2	37,6	58,8	67,7			

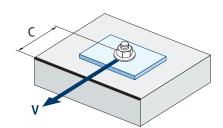


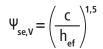
Résistance de calcul par écaillage *									
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$									
Métrique	M8	M10	M12	M16	M20	M24			
k	1	2	2	2	2	2			

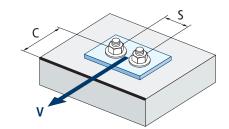
^{*} $N_{Rd,c}^{o}$ Résistance de calcul de traction par cône de béton

	Re	ésistanc	e de calcul p	oar rupture	du bord du	béton					
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$										
	Métrique	M8	M10	M12	M16	M20	M24				
\ /0	Béton non fissuré	[kN]	6,2	8,9	11,5	15,9	20,8	30,1			
V ^o _{Rd,c}	Béton fissuré	[kN]	4,4	6,3	8,2	11,3	14,7	21,4			

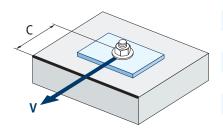
Coefficients d'influence

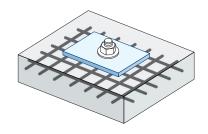

Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$											
		M8	M10	M12	M16	M20	M24				
	C 20/25			1,	00						
ш	C 30/37			1,	22						
Ψ_{b}	C 40/50			1,	41						
	C 50/60			1,	55						

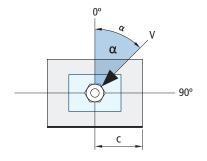



4.	٠ ٥	٠	4	١. ٩	٠,
	Δ.	4	ν.	4	Δ
۵ ۷ ,	. ∀	Δ	- 4	√ ⊲	٠. ۵
. ~ 4	. 4	. 4	۰. ۵	4 .	٠ ۵
-	- ⊿ ,	ν,	Þ .	, .	□ △
۵., ۵	, D		Δ		۵.
· · ·	۰. ۵	4	▷ .	٥.	Δ

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

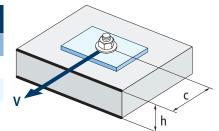

				lr	nfluen	ice dis	stance	au b	ord e	t dista	ınce e	ntre c	hevill	es Ψ _{se}	, v			
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
S/C	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1.5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1.5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

Influence distance au bord du béton Ψ _{c.v}											
				ITP							
c [mm]	M8	M10	M12	M16	M20	M24					
40											
45											
50	0,69			Valeurs no	n admises						
55	0,68										
60	0,67	0,70									
65	0,66	0,69	0,71								
70	0,65	0,68	0,70								
80	0,63	0,66	0,68								
85	0,62	0,65	0,68	0,72							
90	0,62	0,64	0,67	0,71							
100	0,60	0,63	0,65	0,69	0,72						
105	0,60	0,62	0,65	0,69	0,72						
110	0,59	0,62	0,64	0,68	0,71						
120	0,58	0,61	0,63	0,67	0,70						
125	0,58	0,60	0,63	0,66	0,69	0,72					
130	0,57	0,60	0,62	0,66	0,69	0,71					
135	0,57	0,59	0,62	0,65	0,68	0,71					
140	0,56	0,59	0,61	0,65	0,68	0,70					
150	0,56	0,58	0,60	0,64	0,67	0,69					
160	0,55	0,57	0,60	0,63	0,66	0,68					
170	0,54	0,57	0,59	0,62	0,65	0,68					
175	0,54	0,56	0,59	0,62	0,65	0,67					
180	0,54	0,56	0,58	0,62	0,64	0,67					
190	0,53	0,55	0,58	0,61	0,64	0,66					
200	0,53	0,55	0,57	0,60	0,63	0,65					
210	0,52	0,54	0,56	0,60	0,62	0,65					
220	0,52	0,54	0,56	0,59	0,62	0,64					
230	0,51	0,53	0,55	0,59	0,61	0,64					
240	0,51	0,53	0,55	0,58	0,61	0,63					
250	0,50	0,53	0,54	0,58	0,60	0,63					
260	0,50	0,52	0,54	0,57	0,60	0,62					
270	0,49	0,52	0,54	0,57	0,59	0,62					
280	0,49	0,51	0,53	0,56	0,59	0,61					
290	0,49	0,51	0,53	0,56	0,59	0,61					
300	0,48	0,51	0,53	0,56	0,58	0,60					

Influence des armatures Ψ _{re,V}											
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm								
Béton non fissuré	1	1	1								
Béton fissuré	1	1,2	1,4								



	Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha,v}}$													
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°				
Ψ _{α.ν}	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50				

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos \alpha_v\right)^2 + \left(\frac{\sin \alpha_v}{2,5}\right)^2}} \ge 1$$

	Influence de l'épaisseur du matériau de base Ψ _{h,v}												
	МТР												
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5			
$\Psi_{\text{h},\text{V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00			

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

	Résistance caractéristique*												
			TRAC	TION		CISAILLEMENT							
	M8	M10	M12	M16	M20	M24	M8	M10	M12	M16	M20	M24	
RF30	0,4	0,9	1,7	3,1	4,9	7,1	0,4	0,9	1,7	3,1	4,9	7,1	
RF60	0,3	0,8	1,3	2,4	3,7	5,3	0,3	0,8	1,3	2,4	3,7	5,3	
RF90	0,3	0,6	1,1	2,0	3,2	4,6	0,3	0,6	1,1	2,0	3,2	4,5	
RF120	0,2	0,5	0,8	1,6	2,5	3,5	0,2	0,5	0,8	1,6	2,5	3,5	

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

	Charge maximale recommandée												
			TRAC	TION		CISAILLEMENT							
	M8	M10	M12	M16	M20	M24	M8	M10	M12	M16	M20	M24	
RF30	0,3	0,6	1,2	2,2	3,5	5,1	0,3	0,6	1,2	2,2	3,5	5,1	
RF60	0,2	0,6	0,9	1,7	2,6	3,8	0,2	0,6	0,9	1,7	2,6	3,8	
RF90	0,2	0,4	0,8	1,4	2,3	3,3	0,2	0,4	0,8	1,4	2,3	3,2	
RF120	0,1	0,4	0,6	1,1	1,8	2,5	0,1	0,4	0,6	1,1	1,8	2,5	

GAMME

Code	Homologation sismique	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ	Code	Homologation sismique	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ
• AP08050	-	M8 x 50 Ø8	2	А	100	800	AP12120	C1&C2	M12 x 120 Ø12	24	G	50	200
AP08075	-	M8 x 75 Ø8	9	С	100	600	AP12130	C1&C2	M12 x 130 Ø12	34	Н	50	200
AP08095	-	M8 x 95 Ø8	29	E	100	600	AP12150	C1&C2	M12 x 150 Ø12	54	I	50	100
AP08115	-	M8 x 115 Ø8	49	G	100	400	AP12180	C1&C2	M12 x 180 Ø12	84	L	50	150
AP10090	C1	M10 x 90 Ø10	10	E	100	400	AP12200	C1&C2	M12 x 200 Ø12	104	М	50	150
AP10105	C1	M10 x 105 Ø10	25	F	50	300	AP16145	C1&C2	M16 x 145 Ø16	28	I	25	100
AP10115	C1	M10 x 115 Ø10	35	G	50	200	AP16175	C1&C2	M16 x 175 Ø16	58	K	25	50
AP10135	C1	M10 x 135 Ø10	55	Н	50	200	AP16220	C1&C2	M16 x 220 Ø16	103	0	25	50
AP10165	C1	M10 x 165 Ø10	85	К	50	200	AP16250	C1&C2	M16 x 250 Ø16	133	Q	25	50
AP10185	C1	M10 x 185 Ø10	105	L	50	150	AP20170	-	M20 x 170 Ø20	32	K	20	40
• AP12080	-	M12 x 80 Ø12	4	D	50	300	AP20200	-	M20 x 200 Ø20	62	М	20	40
AP12100	C1&C2	M12 x 100 Ø12	4	Е	50	200	AP24205	-	M24 x 205 Ø24	35	N	10	30
AP12110	C1&C2	M12 x 110 Ø12	14	F	50	200	AP24235	-	M24 x 235 Ø24	65	Р	10	20

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

Cheville à expansion par couple contrôlé á utiliser dans le béton fissuré et non fissuré

Homologuée ETA Option 1. Tige zinguée. Bague shérardisée.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0053.
- ETA 12/0397 option 1.
- · Déclaration des performances DoP MTP.

DIMENSIONS

M8x50 à M20x200.

PLAGE DE CHARGE DE CALCUL

De 5,6 à 32,8 kN (non fissuré). De 3,9 à 23,0 kN (fissuré).

MATERIAL BASE

Béton de qualité C20/25 à C50/60 fissuré ou non fissuré.

HOMOLOGATIONS

- Option 1 (béton fissuré et non fissuré).
- Résistance au feu R30-120
- Sismique C1: M8÷M20
- · Sismigue C2: M10, M12 et M20

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Marque de longueur sur la partie supérieure de la tige ce qui facilite l'inspection et le contrôle de qualité.
- Disponible sur INDEXcal.

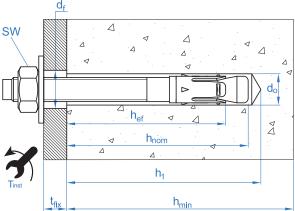
MATÉRIAUX

Tige: Acier au carbone, zingué $\geq 5 \mu m$. Rondelle: DIN 125 ou DIN 9021, zinguée $\geq 5 \mu m$. Écrou: DIN 934, zingué $\geq 5 \mu m$.

Bague: Acier au carbone, shérardisé ≥ 40 µm.

APPLICATIONS

- · Plaques d'ancrage.
- Structures métalliques.
- · Ponts.
- Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- Ascenseurs.
- Supports de tuyauteries.



PROPRIÉTÉS MÉCANIQUES											
			M8	M10	M12	M16	M20				
		Section dans la zone	du cône								
A_s	(mm²)	Section dans la zone du cône	22,9	41,8	55,4	103,9	176,7				
$f_{u,s}$	(N/mm²)	Résistance caractéristique à la traction	790	750	730	700	660				
$f_{y,s}$	(N/mm²)	Limite élastique	632	600	585	560	530				
		Section dans la zon	e filetée								
A_s	(mm²)	Section dans la zone filetée	36,6	58,0	84,3	157,0	245,0				
$f_{u,s}$	(N/mm²)	Résistance caractéristique à la traction	600	600	600	600	600				
$f_{y,s}$	(N/mm²)	Limite élastique	480	480	480	480	480				

	DONNÉES	D'INSTA	LLATION				
MÉTRIQU	JE		M8	M10	M12	M16	M20
Code			APX08XXX	APX10XXX	APX12XXX	APX16XXX	APX20XXX
d _o	Diamètre du foret	[mm]	8	10	12	16	20
T _{ins}	Couple d'installation	[Nm]	15	40	60	100	200
$d_f \le$	Diamètre du filetage sur la plaque à fixer	[mm]	9	12	14	18	22
h ₁	Profondeur minimale du perçage	[mm]	60	75	85	105	125
h _{nom}	Profondeur d'installation	[mm]	55	68	80	97	114
h_{ef}	Profondeur effective	[mm]	48	60	70	85	100
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	120	140	170	200
t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 66	L - 80	L - 96	L - 117	L-138
S _{cr,N}	Distance critique entre chevilles	[mm]	144	180	210	255	300
C _{cr,N}	Distance critique au bord	[mm]	72	90	105	128	150
S _{cr,sp}	Distance critique à fissuration	[mm]	288	300	350	510	600
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	144	150	175	255	300
S _{min}	Distance minimale entre chevilles	[mm] [mm]	40 55	40 70	60 75	65 95	95 105
C _{min}	Distance minimale au bord	[mm] [mm]	45 55	45 90	55 110	70 115	95 105
SW	Clé d'installation		13	17	19	24	30

 $^*L =$ Longueur totale de la cheville

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
0	2	3
•	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}														
TRACTION										C	ISAILLE	MENT			
Métrique M8 M10 M12 M16 M20					Métrique		M8	M10	M12	M16	M20				
N_{Rk}	Béton non fissuré	[kN]	10,0	18,0	28,0	34,0	49,2	VR	Béton non fissuré	[kN]	11,0	17,4	25,3	47,1	73,1
$N_{\rm Rk}$	Béton fissuré	[kN]	7,0	11,0	15,0	27,0	34,4	V _R	Béton fissuré	[kN]	11,5	17,4	25,3	53,9	68,8

						Résista	ance de	calcul	N_{Rd} y V_{Rd}						
				C	ISAILLE	MENT									
Métrique M8 M10 M12 M16 M20						Métrique		M8	M10	M12	M16	M20			
N_{Rd}	Béton non fissuré	[kN]	5,6	12,0	18,7	22,7	32,8	V_{Rd}	Béton non fissuré	[kN]	8,8	13,9	20,2	37,7	58,5
N_{Rd}	Béton fissuré	[kN]	3,9	7,3	10,0	18,0	23,0	$V_{\rm Rd}$	Béton fissuré	[kN]	7,6	13,9	20,2	35,9	45,9

					Charg	e maxi	male re	comm	andée N _{rec} y V _{rec}	c					
	TRACTION									C	ISAILLE	MENT			
Métrique M8 M10 M12 M16 M20						Métrique		M8	M10	M12	M16	M20			
$N_{\rm rec}$	Béton non fissuré	[kN]	4,0	8,6	13,3	16,2	23,4	V_{rec}	Béton non fissuré	[kN]	6,3	9,9	14,5	26,9	41,8
$N_{\rm rec}$	Béton fissuré	[kN]	2,8	5,2	7,1	12,9	16,4	$V_{\rm rec}$	Béton fissuré	[kN]	5,4	9,9	14,5	25,7	32,8

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 12/0397

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 12/0397.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

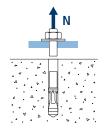
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

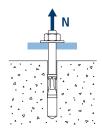
Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site **www.indexfix.com**

MTP-X

CHARGES DE TRACTION

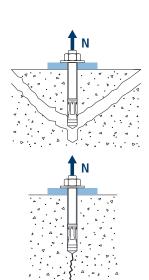

• Résistance de calcul de l'acier: N_{Rd} a

 Résistance de calcul par arrachement: $N_{Rd,p} = N^o_{\ Rd,p} \cdot \Psi_c$


• Résistance de calcul par cône de béton: $N_{Rd,c} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$

• Résistance de calcul par fissuration du béton: $N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$

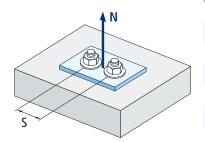
	Résistance de calcul de l'acier												
$N_{Rd,s}$													
Métrique M8 M10 M12 M16 M20													
$N_{ m Rd}^{ m o}$	[kN]	12,1	20,9	26,9	48,5	77,7							


	Résistance de calcul par arrachement												
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c}$												
	Métrique		M8	M10	M12	M16	M20						
$N^{o}_{Rd,p}$	Béton non fissuré	[kN]	5,56	12,00	18,67	22,67	_*						
$N^o_{Rd,p}$	Béton fissuré	[kN]	3,89	7,33	10,00	-*	_*						

^{*} L'échec par arrachement n'est pas décisif.

Résistance de calcul par cône de béton												
$N_{Rd,c} = N_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$												
Résistance de calcul par fissuration du béton*												
$N_{Rd,sp} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$												
Métrique		M8	M10	M12	M16	M20						
N° Béton non fissuré	25,7	32,8										
N° _{Rd,c} Béton fissuré [kN] 6,4 10,7 13,5 18,0 23,0												

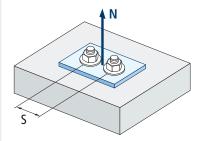
Coefficients d'influence

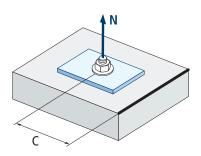


Influence de la résistance du béton pour arrachement $\Psi_{\rm c}$									
M8 M10 M12 M16 M20									
	C 20/25			1,00					
	C 30/37	1,22	1,17	1,22	1,22	1,17			
Ψς	C 40/50	1,41	1,31	1,41	1,41	1,31			
	C 50/60	1,58	1,43	1,58	1,58	1,43			

4 4	4 4	ν· Δ Δ
Δ ,	Δ. Δ.	Δ Δ · _d
٠		^ . ^ <
Δ.		^ .
4		▷ △
. 4		
Δ,	, , , , , , , , , , , , , , , , , , ,	۵۰.۰
Δ Δ	D . D . Q 4	▶ • △ . △

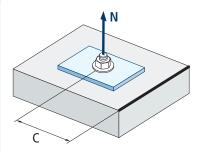
Influenc	Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$								
		M8	M10	M12	M16	M20			
	C 20/25			1,00					
	C 30/37			1,22					
Ψ_{b}	C 40/50			1,41					
	C 50/60			1,58					


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

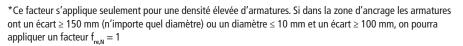

$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

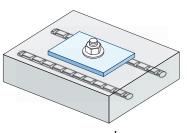
	Influence distance entre chevilles (cône de béton) $\Psi_{_{s,N}}$								
. []			MTP-X						
s [mm]	M8	M10	M12	M16	M20				
40	0,64	0,61							
50	0,67	0,64		Valoure no	n admicac				
55	0,69	0,65		valeurs no	n admises				
60	0,71	0,67	0,64						
65	0,73	0,68	0,65	0,63					
70	0,74	0,69	0,67	0,64					
80	0,78	0,72	0,69	0,66					
85	0,80	0,74	0,70	0,67					
90	0,81	0,75	0,71	0,68					
95	0,83	0,76	0,73	0,69					
100	0,85	0,78	0,74	0,70					
105	0,86	0,79	0,75	0,71					
110	0,88	0,81	0,76	0,72					
120	0,92	0,83	0,79	0,74					
125	0,93	0,85	0,80	0,75	0,71				
126	0,94	0,85	0,80	0,75	0,71				
128	0,94	0,86	0,80	0,75	0,71				
130	0,95	0,86	0,81	0,75	0,72				
135	0,97	0,88	0,82	0,76	0,73				
144	1,00	0,90	0,84	0,78	0,74				
150		0,92	0,86	0,79	0,75				
165		0,96	0,89	0,82	0,78				
170		0,97	0,90	0,83	0,78				
180		1,00	0,93	0,85	0,80				
195			0,96	0,88	0,83				
200			0,98	0,89	0,83				
210			1,00	0,91	0,85				
220				0,93	0,87				
225				0,94	0,88				
252				0,99	0,92				
255	Valeu	rs sans réductio	on = 1	1,00	0,93				
260					0,93				
300					1,00				

	Influence distance entre chevilles (fissuration) $\Psi_{s,sp}$								
			MTP-X						
s [mm]	M8	M10	M12	M16	M20				
40	0,57	0,57							
50	0,59	0,58		W-1	a adada a				
55	0,60	0,59		valeurs no	n admises				
60	0,60	0,60	0,59						
65	0,61	0,61	0,59	0,56					
70	0,62	0,62	0,60	0,57					
80	0,64	0,63	0,61	0,58					
85	0,65	0,64	0,62	0,58					
90	0,66	0,65	0,63	0,59					
95	0,66	0,66	0,64	0,59	0,58				
100	0,67	0,67	0,64	0,60	0,58				
110	0,69	0,68	0,66	0,61	0,59				
125	0,72	0,71	0,68	0,62	0,60				
128	0,72	0,71	0,68	0,63	0,61				
135	0,73	0,73	0,69	0,63	0,61				
140	0,74	0,73	0,70	0,64	0,62				
150	0,76	0,75	0,71	0,65	0,63				
160	0,78	0,77	0,73	0,66	0,63				
165	0,79	0,78	0,74	0,66	0,64				
168	0,79	0,78	0,74	0,66	0,64				
180	0,81	0,80	0,76	0,68	0,65				
192	0,83	0,82	0,77	0,69	0,66				
200	0,85	0,83	0,79	0,70	0,67				
210	0,86	0,85	0,80	0,71	0,68				
220	0,88	0,87	0,81	0,72	0,68				
260	0,95	0,93	0,87	0,75	0,72				
280	0,99	0,97	0,90	0,77	0,73				
288	1,00	0,98	0,91	0,78	0,74				
300		1,00	0,93	0,79	0,75				
336			0,98	0,83	0,78				
350			1,00	0,84	0,79				
360				0,85	0,80				
412				0,90	0,84				
425				0,92	0,85				
500				0,99	0,92				
510	Valeu	rs sans réduction	on = 1	1,00	0,93				
560					0,97				
600					1,00				


$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

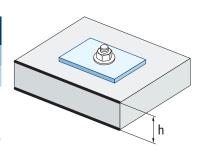
$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsn}} + \frac{0.15 \cdot c^2}{C_{crsn}^2} \le 1$$


	Influence distance au bord du béton (fissuration) $\Psi_{_{c,sp}}$								
, ,			MTP-X						
c [mm]	M8	M10	M12	M16	M20				
45	0,52	0,51							
50	0,54	0,53		Valeurs non admises					
55	0,56	0,55	0,52	valeurs no	n aumises				
60	0,58	0,57	0,54						
65	0,61	0,59	0,56						
70	0,63	0,62	0,57	0,50					
75	0,65	0,64	0,59	0,51					
80	0,67	0,66	0,61	0,52					
83	0,69	0,67	0,62	0,53					
84	0,69	0,68	0,62	0,53					
85	0,70	0,68	0,63	0,53					
90	0,72	0,70	0,65	0,55					
95	0,75	0,73	0,67	0,56	0,52				
100	0,77	0,75	0,68	0,57	0,53				
105	0,79	0,77	0,70	0,58	0,54				
110	0,82	0,80	0,72	0,59	0,55				
125	0,90	0,87	0,78	0,63	0,58				
128	0,91	0,89	0,80	0,64	0,59				
130	0,92	0,90	0,80	0,64	0,59				
135	0,95	0,92	0,82	0,66	0,61				
140	0,98	0,95	0,85	0,67	0,62				
144	1,00	0,97	0,86	0,68	0,62				
150		1,00	0,89	0,70	0,64				
168			0,97	0,74	0,68				
175			1,00	0,76	0,69				
180				0,78	0,70				
206				0,85	0,76				
213				0,87	0,78				
250	V-1		1	0,98	0,87				
255	valeu	rs sans réductio	on = 1	1,00	0,88				
280					0,95				
300					1,00				


	Influence dist	tance au bord d	lu béton (cône d	de béton) Ψ _{c,N}			
e [mm]			MTP-X				
c [mm]	M8	M10	M12	M16	M20		
40	0,67	0,60					
50	0,77	0,67					
53	0,80	0,70	Valeurs non admises				
60	0,87	0,75					
63	0,90	0,77					
65	0,92	0,79	0,72				
70	0,98	0,83	0,75				
72	1,00	0,85	0,76				
75		0,87	0,78				
80		0,91	0,82				
83		0,94	0,84				
85		0,96	0,85				
90		1,00	0,89				
95			0,93	0,80			
100			0,96	0,83			
105			1,00	0,86			
110				0,89			
113				0,91			
125			0,98	0,87			
126			0,99	0,88			
128	Valeu	rs sans réductio	on = 1	1,00	0,89		
135					0,92		
150					1,00		

$$\Psi_{c,N} = \, 0.35 \, + \, \frac{0.5 \cdot c}{C_{cr,N}} \, + \, \frac{0.15 \cdot c^2}{C_{cr,N}^{\, \, 2}} \leq 1$$

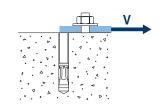
Influence d'armature Ψ _{re,N}							
			MTP-X				
$\Psi_{re,N}$	M8	M10	M12	M16	M20		
,	0,74	0,80	0,85	0,93	1,00		



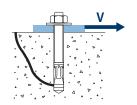
$$\Psi_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$$

Influence de l'épaisseur du matériau de base $\Psi_{ extsf{h,sp}}$											
						MTP-X					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
.,	Ψ _{h.sp}	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

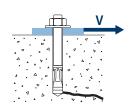

CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,\,{
m V}_{{
m Rd,s}}$


 Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$

Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

Résistance de calcul de l'acier sans bras de levier								
$V_{Rd,s}$								
Métrique	Métrique M8 M10 M12 M16 M20							
V _{Rds} [kN] 8,8 13,9 20,2 37,7 58,5								

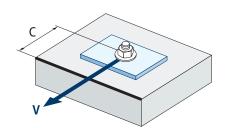


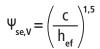
Résistance de calcul par écaillage *							
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$							
Métrique	M8	M10	M12	M16	M20		
k	1	2	2	2	2		

^{*} $N_{Rd,c}^{o}$ Résistance de calcul de traction par cône de béton

	Résistance de calcul par rupture du bord du béton								
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$								
	Métrique M8 M10 M12 M16 M20								
\/0	Béton non fissuré	[kN]	6,2	8,9	11,5	15,9	20,8		
V ^o _{Rd,c}	Béton fissuré	[kN]	4,4	6,3	8,2	11,3	14,7		

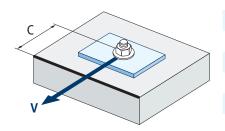
Coefficients d'influence

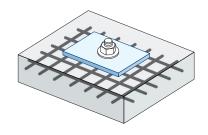

Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{f b}}$											
		M8	M10	M12	M16	M20					
	C 20/25			1,00							
	C 30/37			1,22							
$\Psi_{_{\! b}}$	C 40/50			1,41							
	C 50/60			1,55							

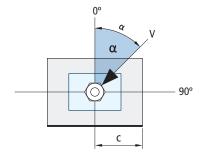


4	. 4 . 4
Δ.	φ. Δ Δ
^ ~ · ~ ^	* • • • •
	` ▷ · . △ ,
Δ	Δ
, ,	
δ · ρ · γ · .	, , , , ,

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

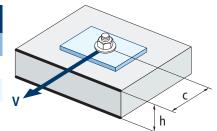

	Influence distance au bord et distance entre chevilles $\Psi_{se,V}$																	
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

	Influ	ence distance a	u bord du béto	n Ψ _{c,v}	
[]			MTP-X		
c [mm]	M8	M10	M12	M16	M20
40					
45					
50	0,69		Valeurs no	on admises	
55	0,68				
60	0,67	0,70			
65	0,66	0,69	0,71		
70	0,65	0,68	0,70		
80	0,63	0,66	0,68		
85	0,62	0,65	0,68	0,72	
90	0,62	0,64	0,67	0,71	
100	0,60	0,63	0,65	0,69	0,72
105	0,60	0,62	0,65	0,69	0,72
110	0,59	0,62	0,64	0,68	0,71
120	0,58	0,61	0,63	0,67	0,70
125	0,58	0,60	0,63	0,66	0,69
130	0,57	0,60	0,62	0,66	0,69
135	0,57	0,59	0,62	0,65	0,68
140	0,56	0,59	0,61	0,65	0,68
150	0,56	0,58	0,60	0,64	0,67
160	0,55	0,57	0,60	0,63	0,66
170	0,54	0,57	0,59	0,62	0,65
175	0,54	0,56	0,59	0,62	0,65
180	0,54	0,56	0,58	0,62	0,64
190	0,53	0,55	0,58	0,61	0,64
200	0,53	0,55	0,57	0,60	0,63
210	0,52	0,54	0,56	0,60	0,62
220	0,52	0,54	0,56	0,59	0,62
230	0,51	0,53	0,55	0,59	0,61
240	0,51	0,53	0,55	0,58	0,61
250	0,50	0,53	0,54	0,58	0,60
260	0,50	0,52	0,54	0,57	0,60
270	0,49	0,52	0,54	0,57	0,59
280	0,49	0,51	0,53	0,56	0,59
290	0,49	0,51	0,53	0,56	0,59
300	0,48	0,51	0,53	0,56	0,58

	Influence des armatures $\Psi_{re,V}$										
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm								
Béton non fissuré	1	1	1								
Béton fissuré	1	1,2	1,4								



	Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha,v}}$											
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°		
Ψ _{α.ν}	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50		

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2,5}\right)^2}} \ge 1$$

	Influence de l'épaisseur du matériau de base Ψ _{h,ν}											
	MTP-X											
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5		
$\Psi_{\text{h},\nu}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00		

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

	Résistance caractéristique*											
			TRACTION		CISAILLEMENT							
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20		
RF30	0,4	0,9	1,7	3,1	4,9	0,4	0,9	1,7	3,1	4,9		
RF60	0,3	0,8	1,3	2,4	3,7	0,3	0,8	1,3	2,4	3,7		
RF90	0,3	0,6	1,1	2,0	3,2	0,3	0,6	1,1	2,0	3,2		
RF120	0,2	0,5	0,8	1,6	2,5	0,2	0,5	0,8	1,6	2,5		

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

	Charge maximale recommandée											
			TRACTION		CISAILLEMENT							
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20		
RF30	0,3	0,6	1,2	2,2	3,5	0,3	0,6	1,2	2,2	3,5		
RF60	0,2	0,6	0,9	1,7	2,6	0,2	0,6	0,9	1,7	2,6		
RF90	0,2	0,4	0,8	1,4	2,3	0,2	0,4	0,8	1,4	2,3		
RF120	0,1	0,4	0,6	1,1	1,8	0,1	0,4	0,6	1,1	1,8		

GAMME

Code	Homologation sismique	Dimensions	mav à	Lettre axe (longueur)	đ	đ	Code	Homologation sismique	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	Ø	đ
• APX08050	-	M8 x 50 Ø8	2	А	100	800	APX12120	C1&C2	M12 x 120 Ø12	24	G	50	200
APX08075	C1	M8 x 75 Ø8	9	С	100	600	APX12130	C1&C2	M12 x 130 Ø12	34	Н	50	200
APX08080	C1	M8 x 80 Ø8	14	D	100	600	APX12150	C1&C2	M12 x 150 Ø12	54	I	50	100
APX08095	C1	M8 x 95 Ø8	29	Е	100	600	APX12180	C1&C2	M12 x 180 Ø12	84	L	50	150
APX08115	C1	M8 x 115 Ø8	49	G	100	400	APX12200	C1&C2	M12 x 200 Ø12	104	М	50	150
APX10090	C1&C2	M10 x 90 Ø10	10	Е	100	400	APX12220	C1&C2	M12 x 220 Ø12	124	0	25	50
APX10105	C1&C2	M10 x 105 Ø10	25	F	50	300	APX12255	C1&C2	M12 x 255 Ø12	159	R	25	50
APX10115	C1&C2	M10 x 115 Ø10	35	G	50	200	APX16145	C1	M16 x 145 Ø16	28	I	25	100
APX10135	C1&C2	M10 x 135 Ø10	55	Н	50	200	APX16175	C1	M16 x 175 Ø16	58	К	25	50
APX10165	C1&C2	M10 x 165 Ø10	85	К	50	200	APX16220	C1	M16 x 220 Ø16	103	0	25	50
APX10185	C1&C2	M10 x 185 Ø10	105	L	50	150	APX16250	C1	M16 x 250 Ø16	133	Q	25	50
• APX12080	-	M12 x 80 Ø12	4	D	50	300	APX20170	C1&C2	M20 x 170 Ø20	32	К	20	40
APX12100	C1&C2	M12 x 100 Ø12	4	Е	50	200	APX20200	C1&C2	M20 x 200 Ø20	62	М	20	40
APX12110	C1&C2	M12 x 110 Ø12	14	F	50	200				•			

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

Cheville à expansion par couple contrôlé á utiliser dans le béton fissuré et non fissuré

Homologuée ETA Option 1. Tige Shérardisée. Bague Inoxydable A4.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0053.
- ETA 12/0397 option 1.
- · Déclaration des performances DoP MTP.

DIMENSIONS

M8x50 à M20x200.

PLAGE DE CHARGE DE CALCUL

De 5,6 à 32,8 kN (non fissuré). De 3,3 à 20,0 kN (fissuré).

MATÉRIAU DE BASE

Béton qualité C20/25 à C50/60 fissuré ou non fissuré.

HOMOLOGATIONS

- Option 1 (béton fissuré et non fissuré).
- Résistance au feu R30-120.
- Sismique C1 M8÷M20
- · Sismigue C2 M12÷M20

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- · Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- Pour charges statiques ou quasi-statiques.
- Disponible sur INDEXcal.

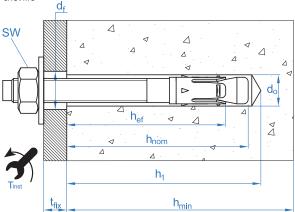
MATÉRIAUX

Tige: Acier au carbone, shérardisé \geq 40 μ m. Rondelle: DIN 125 ou DIN 9021, shérardisé \geq 40 μ m. Écrou: DIN 934, shérardisé \geq 40 μ m.

Bague: Acier inoxydable A4.

APPLICATIONS

- · Plaques d'ancrage.
- Structures métalliques.
- · Ponts.
- Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- · Ascenseurs.
- · Supports de tuyauteries.



	PROPRIÉTÉS MÉCANIQUES											
			M8	M10	M12	M16	M20					
		Section dans la zone	du cône									
A_s	(mm²)	Section dans la zone du cône	22,9	41,8	55,4	103,9	176,7					
$f_{u,s}$	(N/mm²)	Résistance caractéristique à la traction	790	750	730	700	660					
$f_{y,s}$	(N/mm²)	Limite élastique	632	600	585	560	530					
		Section dans la zon	e filetée									
A_s	(mm²)	Section dans la zone filetée	36,6	58,0	84,3	157,0	245,0					
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	600	600	600	600	600					
$f_{y,s}$	(N/mm ²)	Limite élastique	480	480	480	480	480					

	DONNÉES	D'INSTA	LLATION				
MÉTRIQU	JE		M8	M10	M12	M16	M20
Code			APG08XXX	APG10XXX	APG12XXX	APG16XXX	APG20XXX
d _o	Diamètre du foret	[mm]	8	10	12	16	20
T _{ins}	Couple d'installation	[Nm]	15	40	60	100	200
d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	9	12	14	18	22
h ₁	Profondeur minimale du perçage	[mm]	60	75	85	105	125
h _{nom}	Profondeur d'installation	[mm]	55	68	80	97	114
h_{ef}	Profondeur effective	[mm]	48	60	70	85	100
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	120	140	170	200
t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 66	L - 80	L - 96	L - 117	L-138
S _{cr,N}	Distance critique entre chevilles	[mm]	144	180	210	255	300
C _{cr,N}	Distance critique au bord	[mm]	72	90	105	128	150
S _{cr,sp}	Distance critique à fissuration	[mm]	288	300	350	510	600
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	144	150	175	255	300
S _{min}	Distance minimale entre chevilles	[mm]	40 55	40 70	60 75	65 95	95 105
C _{min}	Distance minimale au bord	[mm]	45 55	45 90	55 110	70 115	95 105
SW	Clé d'installation		13	17	19	24	30

 $^*L =$ Longueur totale de la cheville

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}														
			TRACTI	ON						C	ISAILLE	MENT			
	Métrique M8 M10 M12 M16 M20					M20		Métrique		M8	M10	M12	M16	M20	
N_{Rk}	N _{Rk} Béton non fissuré [kN]		10,0	18,0	28,8	36,0	49,2	V_{Rk}	Béton non fissuré	[kN]	11,0	17,4	25,3	47,1	73,1
$N_{\rm Rk}$	Béton fissuré	[kN]	6,0	10,0	16,0	27,0	30,0	V_{Rk}	Béton fissuré	[kN]	11,5	17,4	25,3	53,9	68,8

	Résistance de calcul N _{Rd} y V _{Rd}														
			TRACTI	ON						C	ISAILLE	MENT			
	Métrique M8 M10 M12 M16 M20						M20		Métrique		M8	M10	M12	M16	M20
N_{Rd}	Béton non fissuré	[kN]	5,6	12,0	19,2	24,0	32,8	V_{Rd}	Béton non fissuré	[kN]	8,8	13,9	20,2	37,7	58,5
$N_{\rm Rd}$	Béton fissuré	[kN]	3,3	6,7	10,7	18,0	20,0	V_{Rd}	Béton fissuré	[kN]	7,6	13,9	20,2	35,9	45,9

	Charge maximale recommandée N _{rec} y V _{rec}														
			TRACTI	ON						C	ISAILLE	MENT			
	Métrique M8 M10 M12 M16 M20					M20		Métrique		M8	M10	M12	M16	M20	
$N_{\rm rec}$	N _{rec} Béton non fissuré [kN]		4,0	8,6	13,7	17,1	23,4	$V_{\rm rec}$	Béton non fissuré	[kN]	6,3	9,9	14,5	26,9	41,8
$N_{\rm rec}$	Béton fissuré	[kN]	2,4	4,8	7,6	12,9	14,3	$V_{\rm rec}$	Béton fissuré	[kN]	5,4	9,9	14,5	25,7	32,8

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 12/0397

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 12/0397.

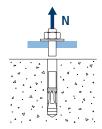
- Influence de la résistance du béton.
- · Influence de la distance au bord.
- · Influence de l'espace entre chevilles.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

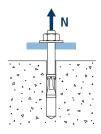
INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix. com

CHARGES DE TRACTION

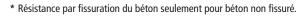

• Résistance de calcul de l'acier: N_{Rd} a

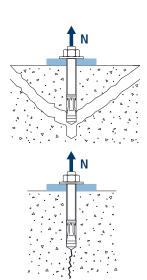
 Résistance de calcul par arrachement: $N_{Rd,p} = N^o_{\ Rd,p} \bullet \Psi_c$


• Résistance de calcul par cône de béton: $N_{Rd,c}^{\text{num}} = N_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$

• Résistance de calcul par fissuration du béton: $N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$

Résistance de calcul de l'acier									
$N_{Rd,s}$									
Métrique		M8	M10	M12	M16	M20			
$N_{ m Rd}^{ m o}$	[kN]	12,1	20,9	26,9	48,5	77,7			

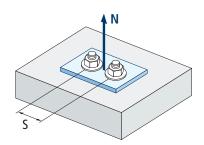



Résistance de calcul par arrachement									
$N_{Rd,p} = N^{\circ}_{Rd,p} \cdot \Psi_{c}$									
	Métrique		M8	M10	M12	M16	M20		
N° Rd,p	Béton non fissuré	[kN]	5,56	12,00	-*	24,00	-*		
N° Rd,p	Béton fissuré	[kN]	3,33	6,67	10,67	-*	20,00		

^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton									
	$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_b \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$									
	Résist	ance de	calcul par f	issuration d	u béton*					
	$N_{Rd,sp} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$									
	Métrique M8 M10 M12 M16 M20									
$N_{Rd,c}^{o}$	N° _{Rd,c} Béton non fissuré [kN] 9,1 15,2 19,2 25,7 32,8									
N° Rd.c Béton fissuré [kN] 6,4 10,7 13,5 18,0 23,0										

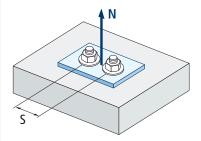
Coefficients d'influence

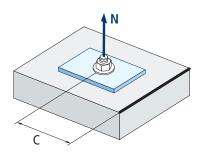


Influence de la résistance du béton pour arrachement $\Psi_{_{\!c}}$											
M8 M10 M12 M16 M20											
	C 20/25			1,00							
w	C 30/37	1,22	1,17	1,22	1,22	1,17					
Ψ _c	C 40/50	1,41	1,31	1,41	1,41	1,31					
	C 50/60	1,58	1,43	1,58	1,58	1,43					

. 7	44.0.44.
Δ	ν· Δ. ⁴ γ· Δ Δ
• .	
Δ.	
٠ ،	·
• ∇	. , .
<u>,</u>	
Δ	P . D . Q . Q . Q . Q

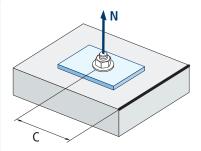
Influenc	Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$									
		M8	M10	M12	M16	M20				
	C 20/25			1,00						
	C 30/37			1,22						
Ψ_{b}	C 40/50			1,41						
	C 50/60			1,58						


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

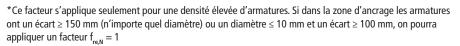

$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

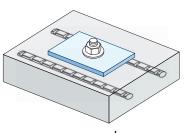
	Influence di	stance entre ch	evilles (cône de	e béton) Ψ _{s,N}		
			MTP-G			
s [mm]	M8	M10	M12	M16	M20	
40	0,64	0,61				
50	0,67	0,64		W-1	ar a day ta ca	
55	0,69	0,65		Valeurs no	n admises	
60	0,71	0,67	0,64			
65	0,73	0,68	0,65	0,63		
70	0,74	0,69	0,67	0,64		
80	0,78	0,72	0,69	0,66		
85	0,80	0,74	0,70	0,67		
90	0,81	0,75	0,71	0,68		
95	0,83	0,76	0,73	0,69		
100	0,85	0,78	0,74	0,70		
105	0,86	0,79	0,75	0,71		
110	0,88	0,81	0,76	0,72		
120	0,92	0,83	0,79	0,74		
125	0,93	0,85	0,80	0,75	0,71	
126	0,94	0,85	0,80	0,75	0,71	
128	0,94	0,86	0,80	0,75	0,71	
130	0,95	0,86	0,81	0,75	0,72	
135	0,97	0,88	0,82	0,76	0,73	
144	1,00	0,90	0,84	0,78	0,74	
150		0,92	0,86	0,79	0,75	
165		0,96	0,89	0,82	0,78	
170		0,97	0,90	0,83	0,78	
180		1,00	0,93	0,85	0,80	
195			0,96	0,88	0,83	
200			0,98	0,89	0,83	
210			1,00	0,91	0,85	
220				0,93	0,87	
225		0,88				
252		0,92				
255	Valeurs sans réduction = 1 1,00 0,					
260					0,93	
300					1,00	

	influence	distance entre	chevilles (fissura	ation) Ψ _{ssn}	
			MTP-G	3,34	
s [mm]	M8	M10	M12	M16	M20
40	0,57	0,57			
50	0,59	0,58		W I	
55	0,60	0,59		Valeurs no	on admises
60	0,60	0,60	0,59		
65	0,61	0,61	0,59	0,56	
70	0,62	0,62	0,60	0,57	
80	0,64	0,63	0,61	0,58	
85	0,65	0,64	0,62	0,58	
90	0,66	0,65	0,63	0,59	
95	0,66	0,66	0,64	0,59	0,58
100	0,67	0,67	0,64	0,60	0,58
110	0,69	0,68	0,66	0,61	0,59
125	0,72	0,71	0,68	0,62	0,60
128	0,72	0,71	0,68	0,63	0,61
135	0,73	0,73	0,69	0,63	0,61
140	0,74	0,73	0,70	0,64	0,62
150	0,76	0,75	0,71	0,65	0,63
160	0,78	0,77	0,73	0,66	0,63
165	0,79	0,78	0,74	0,66	0,64
168	0,79	0,78	0,74	0,66	0,64
180	0,81	0,80	0,76	0,68	0,65
192	0,83	0,82	0,77	0,69	0,66
200	0,85	0,83	0,79	0,70	0,67
210	0,86	0,85	0,80	0,71	0,68
220	0,88	0,87	0,81	0,72	0,68
260	0,95	0,93	0,87	0,75	0,72
280	0,99	0,97	0,90	0,77	0,73
288	1,00	0,98	0,91	0,78	0,74
300		1,00	0,93	0,79	0,75
336			0,98	0,83	0,78
350			1,00	0,84	0,79
360				0,85	0,80
412				0,90	0,84
425		0,92	0,85		
500		0,92			
510	Valeu	0,93			
560					0,97
600					1,00


$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot s_{crsp}} \le 1$$

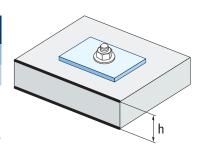
$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsp}} + \frac{0.15 \cdot c^2}{C_{crsp}^2} \le 1$$


	Influence distance au bord du béton (fissuration) $\Psi_{_{\!c,sp}}$								
. []			MTP-G						
c [mm]	M8	M10	M12	M16	M20				
45	0,52	0,51							
50	0,54	0,53		Valoure no	n admicac				
55	0,56	0,55	0,52	Valeurs non admises					
60	0,58	0,57	0,54						
65	0,61	0,59	0,56						
70	0,63	0,62	0,57	0,50					
75	0,65	0,64	0,59	0,51					
80	0,67	0,66	0,61	0,52					
83	0,69	0,67	0,62	0,53					
84	0,69	0,68	0,62	0,53					
85	0,70	0,68	0,63	0,53					
90	0,72	0,70	0,65	0,55					
95	0,75	0,73	0,67	0,56	0,52				
100	0,77	0,75	0,68	0,57	0,53				
105	0,79	0,77	0,70	0,58	0,54				
110	0,82	0,80	0,72	0,59	0,55				
125	0,90	0,87	0,78	0,63	0,58				
128	0,91	0,89	0,80	0,64	0,59				
130	0,92	0,90	0,80	0,64	0,59				
135	0,95	0,92	0,82	0,66	0,61				
140	0,98	0,95	0,85	0,67	0,62				
144	1,00	0,97	0,86	0,68	0,62				
150		1,00	0,89	0,70	0,64				
168			0,97	0,74	0,68				
175			1,00	0,76	0,69				
180				0,78	0,70				
206				0,85	0,76				
213				0,87	0,78				
250				0,98	0,87				
255	Valeu	rs sans réductio	on = 1	1,00	0,88				
280					0,95				
300					1,00				


	Influence dist	tance au bord d	lu béton (cône d	de béton) Ψ _{c,N}					
c [mm]			MTP-G						
C [IIIIII]	M8	M10	M12	M16	M20				
40	0,67	0,60							
50	0,77	0,67							
53	0,80	0,70	Va	leurs non admi:	ses				
60	0,87	0,75							
63	0,90	0,77							
65	0,92	0,79	0,72						
70	0,98	0,83	0,75						
72	1,00	0,85	0,76						
75		0,87	0,78						
80		0,91	0,82						
83		0,94	0,84						
85		0,96	0,85						
90		1,00	0,89						
95			0,93	0,80					
100			0,96	0,83					
105			1,00	0,86					
110				0,89					
113				0,91					
125				0,98	0,87				
126				0,99	0,88				
128	Valeu	rs sans réductio	on = 1	1,00	0,89				
135					0,92				
150					1,00				

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

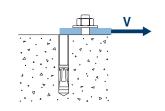
Influence d'armature Ψ _{re,N}								
			MTP-G					
$\Psi_{re,N}$	M8	M10	M12	M16	M20			
,	0,74	0,80	0,85	0,93	1,00			



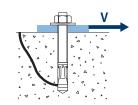
$$\Psi_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$$

	Influence de l'épaisseur du matériau de base $\Psi_{h,sp}$										
		MTP-G									
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
.,	Ψ _{h.sp}	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

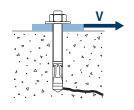

CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,\,{
m V}_{{
m Rd,s}}$


 Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$

Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

Résistance de calcul de l'acier sans bras de levier									
$V_{Rd,s}$									
Métrique		M8	M10	M12	M16	M20			
$V_{Rd,s}$	[kN]	8,8	13,9	20,2	37,7	58,5			



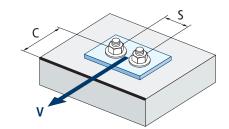
Résistance de calcul par écaillage *								
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$								
Métrique	M8	M10	M12	M16	M20			
k	1	2	2	2	2			

^{*} $N_{Rd,c}^{o}$ Résistance de calcul de traction par cône de béton

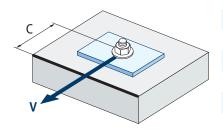
	Résistance de calcul par rupture du bord du béton									
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$									
	Métrique		M8	M10	M12	M16	M20			
\ /0	Béton non fissuré	[kN]	6,2	8,9	11,5	15,9	20,8			
V ^o _{Rd,c}	Béton fissuré	[kN]	4,4	6,3	8,2	11,3	14,7			

Coefficients d'influence

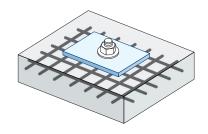
Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$								
		M8	M10	M12	M16	M20		
	C 20/25			1,00				
	C 30/37			1,22				
$\Psi_{_{\! b}}$	C 40/50			1,41				
	C 50/60			1,55				

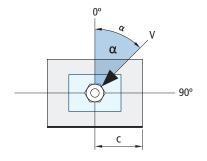

4 , , , ,	4 4 4 4
Δ. 4	
4 A A A	^ · ^ ~ ^
	۵.۵
· · · · · · · · · · · · · · · · · · ·	`
A A D .	۵.,۵
D . D . d	۵.۵.۵

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$


		Influence distance au bord et distance entre chevilles $\Psi_{se,V}$																
		POUR UNE CHEVILLE																
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
	POUR DEUX CHEVILLES																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18

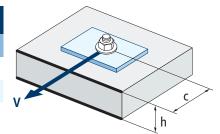
$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1.5}$$


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

	Influ	ence distance a	u bord du béto	n Ψ _{c,V}						
- [1			MTP-G							
c [mm]	M8	M10	M12	M16	M20					
40										
45										
50	0,69		Valeurs non admises							
55	0,68									
60	0,67	0,70								
65	0,66	0,69	0,71							
70	0,65	0,68	0,70							
80	0,63	0,66	0,68							
85	0,62	0,65	0,68	0,72						
90	0,62	0,64	0,67	0,71						
100	0,60	0,63	0,65	0,69	0,72					
105	0,60	0,62	0,65	0,69	0,72					
110	0,59	0,62	0,64	0,68	0,71					
120	0,58	0,61	0,63	0,67	0,70					
125	0,58	0,60	0,63	0,66	0,69					
130	0,57	0,60	0,62	0,66	0,69					
135	0,57	0,59	0,62	0,65	0,68					
140	0,56	0,59	0,61	0,65	0,68					
150	0,56	0,58	0,60	0,64	0,67					
160	0,55	0,57	0,60	0,63	0,66					
170	0,54	0,57	0,59	0,62	0,65					
175	0,54	0,56	0,59	0,62	0,65					
180	0,54	0,56	0,58	0,62	0,64					
190	0,53	0,55	0,58	0,61	0,64					
200	0,53	0,55	0,57	0,60	0,63					
210	0,52	0,54	0,56	0,60	0,62					
220	0,52	0,54	0,56	0,59	0,62					
230	0,51	0,53	0,55	0,59	0,61					
240	0,51	0,53	0,55	0,58	0,61					
250	0,50	0,53	0,54	0,58	0,60					
260	0,50	0,52	0,54	0,57	0,60					
270	0,49	0,52	0,54	0,57	0,59					
280	0,49	0,51	0,53	0,56	0,59					
290	0,49	0,51	0,53	0,56	0,59					
300	0,48	0,51	0,53	0,56	0,58					

Influence des armatures Ψ _{re,} v								
Sans armature Armature en périmètre en périmètre $\geq \varnothing 12 \text{ mm}$ Armature en périmetre avec étrier à ≤ 100								
Béton non fissuré	1	1	1					
Béton fissuré	1	1,2	1,4					



	I	nfluence	e de l'ar	igle d'ap	plicatio	n de la	charge ^ر	γ _{α,ν}		
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
$\Psi_{\alpha,V}$	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2.5}\right)^2}} \geq 1$$

		Infl	uence de	l'épaiss	eur du n	natériau	de base	$\Psi_{h,V}$		
MTP-G h/c 0,15 0,30 0,45 0,60 0,75 0,90 1,05 1,20 1,35 ≥1,5										
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5
$\Psi_{\text{h},\text{V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

				Résistar	nce caractér	istique*				
			TRACTION				(CISAILLEMEN	Т	
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20
RF30	0,4	0,9	1,7	3,1	4,9	0,4	0,9	1,7	3,1	4,9
RF60	0,3	0,8	1,3	2,4	3,7	0,3	0,8	1,3	2,4	3,7
RF90	0,3	0,6	1,1	2,0	3,2	0,3	0,6	1,1	2,0	3,2
RF120	0,2	0,5	0,8	1,6	2,5	0,2	0,5	0,8	1,6	2,5

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

				Charge ma	aximale reco	ommandée						
			TRACTION			CISAILLEMENT						
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20		
RF30	0,3	0,6	1,2	2,2	3,5	0,3	0,6	1,2	2,2	3,5		
RF60	0,2	0,6	0,9	1,7	2,6	0,2	0,6	0,9	1,7	2,6		
RF90	0,2	0,4	0,8	1,4	2,3	0,2	0,4	0,8	1,4	2,3		
RF120	0,1	0,4	0,6	1,1	1,8	0,1	0,4	0,6	1,1	1,8		

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	Ø	đ	Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ
• APG06060	M6 x 60 Ø6	10	В	200	1.200	• APG12080	M12 x 80 Ø12	4	D	50	300
• APG06070	M6 x 70 Ø6	20	С	200	1.200	APG12110	M12 x 110 Ø12	14	F	50	200
• APG06100	M6 x 100 Ø6	50	E	200	800	APG12130	M12 x 130 Ø12	34	Н	50	200
• APG08050	M8 x 50 Ø8	2	А	100	800	APG12150	M12 x 150 Ø12	54	I	50	100
• APG08060	M8 x 60 Ø8	12	В	100	800	APG12160	M12 x 160 Ø12	64	J	50	100
APG08075	M8 x 75 Ø8	9	С	100	600	APG12180	M12 x 180 Ø12	84	L	50	150
APG08095	M8 x 95 Ø8	29	E	100	600	APG12200	M12 x 200 Ø12	104	М	50	150
APG08115	M8 x 115 Ø8	49	G	100	400	APG16125	M16 x 125 Ø16	8	G	25	100
• APG10070	M10 x 70 Ø10	5	С	100	400	APG16145	M16 x 145 Ø16	28	I	25	100
APG10090	M10 x 90 Ø10	10	Е	100	400	APG16175	M16 x 175 Ø16	58	K	25	50
APG10105	M10 x 105 Ø10	25	F	50	300	APG16220	M16 x 220 Ø16	103	0	25	50
APG10115	M10 x 115 Ø10	35	G	50	200	APG16250	M16 x 250 Ø16	133	Q	25	50
APG10135	M10 x 135 Ø10	55	Н	50	200	APG20170	M20 x 170 Ø20	32	K	20	40
APG10165	M10 x 165 Ø10	85	K	50	200	APG20200	M20 x 200 Ø20	62	М	20	40
APG10185	M10 x 185 Ø10	105	L	50	150						

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

Cheville à expansion par couple contrôlé à utiliser dans le béton fissuré et non fissuré

Homologué ETA Option 1. Atlantis. Bague Inoxydable A4.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée, à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0053.
- ETA 12/0397 option 1.
- · Déclaration des performances DoP MTP.

DIMENSIONS

M8x50 à M20x200.

PLAGE DE CHARGE DE CALCUL

De 5,0 à 30,6 kN (non fissuré). De 2,8 à 19,4 kN (fissuré).

MATÉRIAU BASE

Béton de qualité C20/25 à C50/60 fissuré ou non fissuré.

ветоп

Beton

HOMOLOGATIONS

- Option 1 (béton fissuré ou non fissuré).
- Résistance au feu R30-120
- Sismique C1 M10÷M16
- Sismigue C2 M12÷M16

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré ou non fissuré.
- · Apte pour charges moyennes-élevées.
- Installation préalable ou bien à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour des charges statiques ou quasi-statiques.
- Disponible sur INDEXcal.

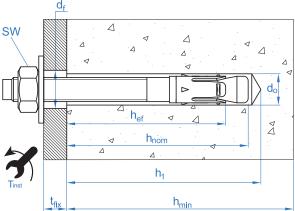
MATÉRIAUX

Tige: Acier estampé à froid Atlantis \geq 8 µm. Rondelle: DIN 125 ou DIN 9021, Atlantis \geq 8 µm. Écrou: DIN 934, Atlantis \geq 8 µm.

Bague: Acier inoxidable A4.

APPLICATIONS

- · Plaques d'ancrage.
- · Structures métalliques.
- · Ponts.
- · Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- · Ascenseurs.
- · Supports de tuyauteries



		PROPRI	ÉTÉS MÉCANI	QUES			
			M8	M10	M12	M16	M20
		Section o	lans la zone di	u cône			
A_s	(mm²)	Section dans la zone du cône	22,9	41,8	55,4	103,9	176,7
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	790	750	730	700	660
$f_{y,s}$	(N/mm ²)	Limite élastique	632	600	585	560	530
		Section	dans la zone f	iletée			
A_s	(mm²)	Section dans la zone filetée	36,6	58,0	84,3	157,0	245,0
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	600	600	600	600	600
$f_{y,s}$	(N/mm ²)	Limite élastique	480	480	480	480	480

		DONNÉ	ES D'INSTALLA	ATION			
MÉTRIQU	JE		M8	M10	M12	M16	M20
Code			AP08XXX	AP10XXX	AP12XXX	AP16XXX	AP20XXX
d _o	Diamètre du foret	[mm]	8	10	12	16	20
T _{ins}	Couple d'installation	[Nm]	20	40	60	100	200
d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	9	12	14	18	22
h ₁	Profondeur minimale du perçage	[mm]	60	75	85	105	125
h _{nom}	Profondeur d'installation	[mm]	55	68	80	97	114
h _{ef}	Profondeur effective	[mm]	48	60	70	85	100
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	120	140	170	200
t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 66	L - 80	L - 96	L - 117	L-138
S _{cr,N}	Distance critique entre chevilles	[mm]	144	180	210	255	300
C _{cr,N}	Distance critique au bord	[mm]	72	90	105	128	150
S _{cr,sp}	Distance critique à fissuration	[mm]	288	300	350	425	500
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	144	150	175	213	250
S _{min}	Distance minimale entre chevilles	[mm] [mm]	40 55	40 70	60 75	65 95	95 105
C _{min}	Distance minimale au bord	[mm] [mm]	45 55	45 90	55 110	70 115	95 105
SW	Clé d'installation		13	17	19	24	30

 $^*L =$ Longueur totale de la cheville

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
1	2	3
4	6	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

					Ré	sistanc	e carac	téristi	que N _{Rk} y V _{Rk}						
		TRACTIO	ON					CI:	SAILLEN	IENT					
	Métrique		M8	M10	M12	M16	M20		Métrique		M8	M10	M12	M16	M20
N_{Rk}	Béton non fissuré	[kN]	9,0	18,0	20,0	36,0	48,0	V _{Rk}	Béton non fissuré	[kN]	11,0	17,4	25,3	47,1	73,1
$N_{\rm Rk}$	Béton fissuré	[kN]	5,0	9,5	12,0	25,0	32,0	V _{Rk}	Béton fissuré	[kN]	11,5	17,4	25,3	53,9	68,8

					Résista	ince de	ca	alcul	N_{Rd} y V_{Rd}							
	TRACTION										CIS	SAILLEM	IENT			
	Métrique		M8	M10	M12	M16	M20			Métrique		M8	M10	M12	M16	M20
$N_{\rm Rd}$	Béton non fissuré	[kN]	5,0	12,0	13,3	24,0	32,0		$V_{\rm Rd}$	Béton non fissuré	[kN]	8,8	13,9	20,2	37,7	58,5
N_{Rd}	Béton fissuré	[kN]	2,8	6,3	8,0	16,7	21,3		$V_{\rm Rd}$	Béton fissuré	[kN]	7,6	13,9	20,2	35,9	45,9

					Charge	e maxir	nale re	comm	andée N _{rec} y V _{rec}	:					
			TRACTIO	ON						CI:	SAILLEN	IENT			
	Métrique		M8	M10	M12	M16	M20	Métrique			M8	M10	M12	M16	M20
$N_{\rm rec}$	Béton non fissuré	[kN]	3,6	8,6	9,5	17,1	22,9	V _{rec}	Béton non fissuré	[kN]	6,3	9,9	14,5	26,9	41,8
$N_{\rm rec}$	Béton fissuré	[kN]	2,0	4,5	5,7	11,9	15,2	V_{rec}	Béton fissuré	[kN]	5,4	9,9	14,5	25,7	32,8

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 12/0397

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 12/0397.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

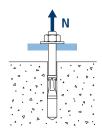
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

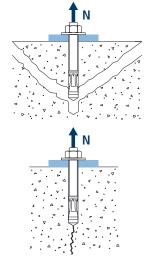
Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site **www.indexfix.com**

CHARGES DE TRACTION

• Résistance de calcul de l'acier:

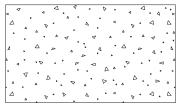

 $N_{\text{Rd,p}}\,=N^{\text{o}}_{\text{ Rd,p}}\,\boldsymbol{\cdot}\,\Psi_{\text{c}}$ • Résistance de calcul par arrachement:

 $\begin{array}{ll} \cdot \text{ Résistance de calcul par cone de béton:} & N_{\text{Rd,c}} = N^{\circ}_{\text{Rd,c}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}} \\ \cdot \text{ Résistance de calcul par fissuration du béton:} & N_{\text{Rd,sp}} = N^{\circ}_{\text{Rd,c}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}} \\ \end{array}$


Résistance de calcul de l'acier									
$N_{Rd,s}$									
Métrique	M8	M10	M12	M16	M20				
N° _{Rd} [kN] 12,1 20,9 26,9 48,5 77,7									

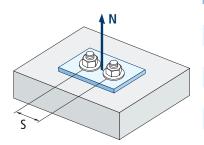
	Résistance de calcul par arrachement									
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c}$									
	Métrique	M8	M10	M12	M16	M20				
$N^{o}_{Rd,p}$	Béton non fissuré	[kN]	5,00	12,00	13,33	24,00	32,00			
$N^{o}_{Rd,p}$	Béton fissuré	[kN]	2,78	6,33	8,00	16,67	21,33			

	Résistance de calcul par cône de béton									
	$N_{Rd,c} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$									
	Résistance de calcul par fissuration du béton*									
	$N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$									
	Métrique		M8	M10	M12	M16	M20			
N° Rd,c	Béton non fissuré	[kN]	9,1	15,2	19,2	25,7	32,8			
$N^o_{\text{Rd,c}}$	Béton fissuré	[kN]	6,4	10,7	13,5	18,0	23,0			



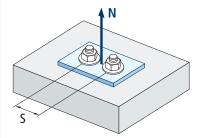
^{*} Résistance par fissuration du béton seulement pour béton non fissuré.

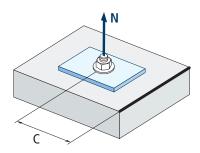
Coefficients d'influence



	Influence de la résistance du béton pour arrachement Ψ_{c}										
		M8	M10	M12	M16	M20					
	C 20/25			1,00							
w	C 30/37	1,22	1,17	1,22	1,22	1,17					
Ψ _c	C 40/50	1,41	1,31	1,41	1,41	1,31					
	C 50/60	1,58	1,43	1,58	1,58	1,43					

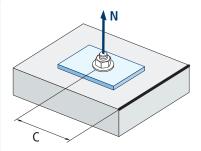
Influenc	Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{\rm b}$										
		M8	M10	M12	M16	M20					
	C 20/25			1,00							
	C 30/37	1,22									
Ψ_{b}	C 40/50			1,41							
	C 50/60			1,58							


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$


$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

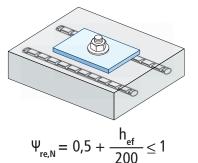
	Influence di	stance entre ch	evilles (cône de	e béton) Ψ _{s.N}	
			MTP-AT		
s [mm]	M8	M10	M12	M16	M20
40	0,64	0,61			
50	0,67	0,64			
55	0,69	0,65		Valeurs no	n admises
60	0,71	0,67	0,64		
65	0,73	0,68	0,65	0,63	
70	0,74	0,69	0,67	0,64	
80	0,78	0,50	0,50	0,66	
85	0,80	0,74	0,70	0,67	
90	0,81	0,75	0,71	0,68	
95	0,83	0,76	0,73	0,69	0,66
100	0,85	0,78	0,74	0,70	0,67
105	0,86	0,79	0,75	0,71	0,68
110	0,88	0,81	0,76	0,72	0,68
120	0,92	0,83	0,79	0,74	0,70
125	0,93	0,85	0,80	0,75	0,71
126	0,94	0,85	0,80	0,75	0,71
128	0,94	0,86	0,80	0,75	0,71
130	0,95	0,86	0,81	0,75	0,72
135	0,97	0,88	0,82	0,76	0,73
144	1,00	0,90	0,84	0,78	0,74
150		0,92	0,86	0,79	0,75
165		0,96	0,89	0,82	0,78
170		0,97	0,90	0,83	0,78
180		1,00	0,93	0,85	0,80
195			0,96	0,88	0,83
200			0,98	0,89	0,83
210			1,00	0,91	0,85
220				0,93	0,87
225				0,94	0,88
252				0,99	0,92
255				1,00	0,93
260					0,93
300		Valeurs sans	réduction = 1		1,00
309					
310					
375					

Influence distance entre chevilles (fissuration) $\Psi_{s,sp}$										
f 1			MTP-AT							
s [mm]	M8	M10	M12	M16	M20					
40	0,57	0,57								
50	0,59	0,58								
55	0,60	0,59		Valeurs non admises						
60	0,60	0,60	0,59							
65	0,61	0,61	0,59	0,58						
70	0,62	0,62	0,60	0,58						
80	0,64	0,63	0,61	0,59						
85	0,65	0,64	0,62	0,60						
90	0,66	0,65	0,63	0,61						
95	0,66	0,66	0,64	0,61	0,60					
100	0,67	0,67	0,64	0,62	0,60					
110	0,69	0,68	0,66	0,63	0,61					
125	0,72	0,71	0,68	0,65	0,63					
128	0,72	0,71	0,68	0,65	0,63					
135	0,73	0,73	0,69	0,66	0,64					
140	0,74	0,73	0,70	0,66	0,64					
150	0,76	0,75	0,71	0,68	0,65					
160	0,78	0,77	0,73	0,69	0,66					
165	0,79	0,78	0,74	0,69	0,67					
168	0,79	0,78	0,74	0,70	0,67					
180	0,81	0,80	0,76	0,71	0,68					
192	0,83	0,82	0,77	0,73	0,69					
200	0,85	0,83	0,79	0,74	0,70					
210	0,86	0,85	0,80	0,75	0,71					
220	0,88	0,87	0,81	0,76	0,72					
260	0,95	0,93	0,87	0,81	0,76					
280	0,99	0,97	0,90	0,83	0,78					
288	1,00	0,98	0,91	0,84	0,79					
300		1,00	0,93	0,85	0,80					
336			0,98	0,90	0,84					
350			1,00	0,91	0,85					
360				0,92	0,86					
412				0,98	0,91					
425				1,00	0,93					
500	Valeu	rs sans réductio	on = 1		1,00					
510										
560										

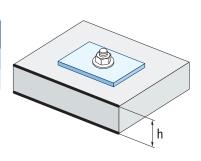

$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}} \le 1$$

	Influence d	istance au bord	du béton (fissu	ration) Ψ _{c.sp}			
, ,			MTP-AT				
c [mm]	M8	M10	M12	M16	M20		
45	0,52	0,51					
50	0,54	0,53					
55	0,56	0,55	0,52	Valeurs no	n admises		
60	0,58	0,57	0,54				
65	0,61	0,59	0,56				
70	0,63	0,62	0,57	0,53			
75	0,65	0,64	0,59	0,54			
80	0,67	0,66	0,61	0,56			
83	0,69	0,67	0,62	0,57			
84	0,69	0,68	0,62	0,57			
85	0,70	0,68	0,63	0,57			
90	0,72	0,70	0,65	0,59			
95	0,75	0,73	0,67	0,60	0,56		
100	0,77	0,75	0,68	0,62	0,57		
105	0,79	0,77	0,70	0,63	0,59		
110	0,82	0,80	0,72	0,65	0,60		
125	0,90	0,87	0,78	0,70	0,64		
128	0,91	0,89	0,80	0,70	0,65		
130	0,92	0,90	0,80	0,71	0,65		
135	0,95	0,92	0,82	0,73	0,66		
140	0,98	0,95	0,85	0,74	0,68		
144	1,00	0,97	0,86	0,76	0,69		
150		1,00	0,89	0,78	0,70		
168			0,97	0,84	0,75		
175			1,00	0,86	0,77		
180				0,88	0,79		
206				0,97	0,86		
213				1,00	0,88		
250	Valeu	rs sans réductio	on = 1		1,00		
255							
280							

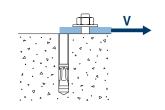

Influence distance au bord du béton (cône de béton) $\Psi_{c,N}$ MTP-AT c [mm] M8 M10 M12 M16 M20 40 0,67 0,60 50 0,77 0,67 53 0,80 0,70 Valeurs non admises 60 0,87 0,75 0,68 63 0,90 0,77 0,70 0,92 65 0,79 0,72 0,64 70 0,98 0,83 0,75 0,67 72 1,00 0,85 0,76 0,68 75 0,87 0,78 0,69 80 0,91 0,82 0,72 0,94 0,84 0,74 83 85 0,96 0,85 0,75 90 1,00 0,89 0,78 95 0,93 0,80 0,73 100 0,96 0,75 0,83 105 1,00 0,86 0,77 110 0,89 0,80 113 0,91 0,81 125 0,98 0,87 0,99 0,88 126 128 1,00 0,89 135 0,92 150 Valeurs sans réduction = 1 1,00 155 188

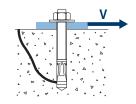
$$\Psi_{c,N} = \, 0.35 \, + \, \frac{0.5 \cdot c}{C_{cr,N}} \, + \, \frac{0.15 \cdot c^2}{C_{cr,N}^2} \leq 1$$


Influence d'armature Ψ _{re,N}									
			MTP-AT						
$\Psi_{re,N}$	M8	M10	M12	M16	M20				
-4	0,74	0,80	0,85	0,93	1,00				

^{*}Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart \geq 150 mm (n'importe quel diamètre) ou un diamètre \leq 10 mm et un écart \geq 100 mm, on pourra appliquer un facteur $f_{re,N}=1$

Influence de l'épaisseur du matériau de base $\Psi_{ extstyle{h,sp}}$											
						MTP-AT					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
	$\Psi_{h,sp}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50


$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1,5$$


CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,\,{
 m V}_{{
 m Rd,s}}$
- Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$
- Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

Résistance de calcul de l'acier sans bras de levier									
$V_{Rd,s}$									
Métrique	M8	M10	M12	M16	M20				
V _{Rd,s} [kN] 8,8 13,9 20,2 37,6 58,8									

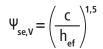
Résistance de calcul par écaillage *								
$V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$								
Métrique	M8	M10	M12	M16	M20			
k 1 2 2 2 2								

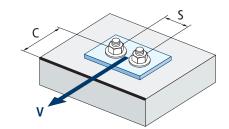
^{*} $N^{o}_{Rd,c}$ Résistance de calcul de traction par cône de béton

Résistance de calcul par rupture du bord du béton										
$V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$										
	Métrique		M8	M10	M12	M16	M20			
V°	Béton non fissuré	[kN]	6,2	8,9	11,5	15,9	20,8			
V Rd,c	Béton fissuré	[kN]	4,4	6,3	8,2	11,3	14,7			

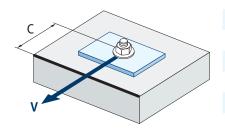
Coefficients d'influence

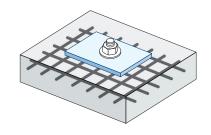
Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$									
		M8	M10	M12	M16	M20			
	C 20/25			1,00					
111	C 30/37			1,22					
$\Psi_{_{\mathbf{b}}}$	C 40/50			1,41					
	C 50/60			1,55					

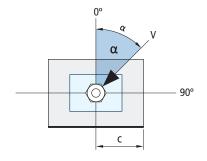



A	4 4 4 4
	ρ · Δ Δ
^ ~ ~ ^ ^	* * * * * *
	^ · · · · ·
· · · · · · · · · · · · · · · · · · ·	
D	۵ ۰ ۰ ۰ ۵
P . D . V . 4	▶ • △ . △

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

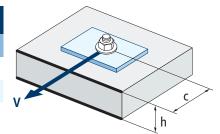

	Influence distance au bord et distance entre chevilles $\Psi_{se,v}$																	
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
	POUR DEUX CHEVILLES																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
S/C	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

Influence distance au bord du béton $\Psi_{_{\mathbf{c},\mathbf{v}}}$										
	MTP-AT									
c [mm]	M8	M10	M12	M16	M20					
40										
45										
50	0,69	Valeurs non admises								
55	0,68									
60	0,67	0,70								
65	0,66	0,69	0,71							
70	0,65	0,68	0,70							
80	0,63	0,66	0,68							
85	0,62	0,65	0,68	0,72						
90	0,62	0,64	0,67	0,71						
100	0,60	0,63	0,65	0,69	0,72					
105	0,60	0,62	0,65	0,69	0,72					
110	0,59	0,62	0,64	0,68	0,71					
120	0,58	0,61	0,63	0,67	0,70					
125	0,58	0,60	0,63	0,66	0,69					
130	0,57	0,60	0,62	0,66	0,69					
135	0,57	0,59	0,62	0,65	0,68					
140	0,56	0,59	0,61	0,65	0,68					
150	0,56	0,58	0,60	0,64	0,67					
160	0,55	0,57	0,60	0,63	0,66					
170	0,54	0,57	0,59	0,62	0,65					
175	0,54	0,56	0,59	0,62	0,65					
180	0,54	0,56	0,58	0,62	0,64					
190	0,53	0,55	0,58	0,61	0,64					
200	0,53	0,55	0,57	0,60	0,63					
210	0,52	0,54	0,56	0,60	0,62					
220	0,52	0,54	0,56	0,59	0,62					
230	0,51	0,53	0,55	0,59	0,61					
240	0,51	0,53	0,55	0,58	0,61					
250	0,50	0,53	0,54	0,58	0,60					
260	0,50	0,52	0,54	0,57	0,60					
270	0,49	0,52	0,54	0,57	0,59					
280	0,49	0,51	0,53	0,56	0,59					
290	0,49	0,51	0,53	0,56	0,59					
300	0,48	0,51	0,53	0,56	0,58					

Influence des armatures Ψ _{re,V}											
	Sans armature Armature en périmètre Armature en périmètre ≥ Ø12 mm ave										
Béton non fissuré	1	1	1								
Béton fissuré	1	1,2	1,4								



	Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha, u}}$													
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°				
Ψα,ν	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50				

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2,5}\right)^2}} \ge 1$$

		Infl	uence de	l'épaiss	eur du n	natériau	de base	$\Psi_{h,V}$						
	MTP-AT													
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5				
$\Psi_{\text{h},\nu}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00				

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

	Résistance caractéristique*													
			TRACTION		CISAILLEMENT									
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20				
RF30	0,4	0,9	1,7	3,1	4,9	0,4	0,9	1,7	3,1	4,9				
RF60	0,3	0,8	1,3	2,4	3,7	0,3	0,8	1,3	2,4	3,7				
RF90	0,3	0,6	1,1	2,0	3,2	0,3	0,6	1,1	2,0	3,2				
RF120	0,2	0,5	0,8	1,6	2,5	0,2	0,5	0,8	1,6	2,5				

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

				Charge ma	aximale reco	ommandée					
			TRACTION		CISAILLEMENT						
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20	
RF30	0,3	0,6	1,2	2,2	3,5	0,3	0,6	1,2	2,2	3,5	
RF60	0,2	0,6	0,9	1,7	2,6	0,2	0,6	0,9	1,7	2,6	
RF90	0,2	0,4	0,8	1,4	2,3	0,2	0,4	0,8	1,4	2,3	
RF120	0,1	0,4	0,6	1,1	1,8	0,1	0,4	0,6	1,1	1,8	

GAMME

Code	Homologation sismique	Dimensions	may á	Lettre axe (longueur)	Ø	đ	Code	Homologation sismique	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	Ø	đ
APAT08075	-	M8 x 75 Ø8	9	С	100	600	APAT12120	C1&C2	M12 x 120 Ø12	24	G	50	200
APAT08095	-	M8 x 95 Ø8	29	Е	100	600	APAT12130	C1&C2	M12 x 130 Ø12	34	Н	50	200
APAT08115	-	M8 x 115 Ø8	49	G	100	400	APAT12150	C1&C2	M12 x 150 Ø12	54	I	50	100
APAT10090	C1	M10 x 90 Ø10	10	Е	100	400	APAT12180	C1&C2	M12 x 180 Ø12	84	L	50	150
APAT10105	C1	M10 x 105 Ø10	25	F	50	300	APAT12200	C1&C2	M12 x 200 Ø12	104	М	50	150
APAT10115	C1	M10 x 115 Ø10	35	G	50	200	APAT16145	C1&C2	M16 x 145 Ø16	28	I	25	100
APAT10135	C1	M10 x 135 Ø10	55	Н	50	200	APAT16175	C1&C2	M16 x 175 Ø16	58	К	25	50
APAT10165	C1	M10 x 165 Ø10	85	К	50	200	APAT16220	C1&C2	M16 x 220 Ø16	103	0	25	50
APAT10185	C1	M10 x 185 Ø10	105	L	50	150	APAT20170	-	M20 x 170 Ø20	32	К	20	40
APAT12100	C1&C2	M12 x 100 Ø12	4	Е	50	200	APAT20200	-	M20 x 200 Ø20	62	N	20	40
APAT12110	C1&C2	M12 x 110 Ø12	14	F	50	200							

Cheville à expansion par couple contrôlé á utiliser dans le béton fissuré et non fissuré

Homologuée ETA Option 1. Tige inoxydable A4. Bague inoxydable A4.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1210-CPR-0053.
- ETA 12/0397 option 1.
- · Déclaration des performances DoP MTP.

DIMENSIONS

M8x75 à M20x285.

PLAGE DE CHARGE DE CALCUL

Desde 8,00 à 27,33 kN (non fissuré). Desde 5,67 à 19,13 kN (fissuré).

MATÉRIAU DE BASE

Béton qualité C20/25 à C50/60 fissuré ou non fissuré.

rmé Béton

HOMOLOGATIONS

- · Option 1 (béton fissuré).
- Résistance au feu R30-120.
- Certificate VdS CEA 4001.

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Fonctionnement par friction installation par couple contrôlé.
- · Apte pour charges lourdes.
- Approuvé pour sa résistance au feu RF30 à RF120.
- Acier inoxydable A4 (AISI 316).
- · Disponible sur INDEXcal.

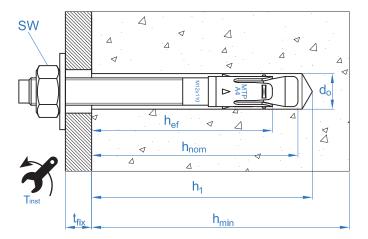
MATÉRIAUX

Tige: Acier inoxydable A4.

Rondelle: DIN 125, Acier inoxydable A4. Écrou: DIN 934, Acier inoxydable A4.

Bague: Acier inoxydable A4.

APPLICATIONS


- Fixations structurelles sur béton fissuré et non fissuré y compris ambiances industrielles et marines.
- · Garde-corps.
- Fixation de poutres d'acier, supports guides perforés, machines, chaudières, panneaux de signalisation, gradins, sous-structures de façades, etc.
- Fixations de structures en bois sur béton.

	PROPRIÉTÉS MÉCANIQUES													
			M8	M10	M12	M16	M20							
		Section dans la	a zone du côr	ne										
A_s	(mm²)	Section dans la zone du cône	26,5	43,4	62,4	82,0	148,8							
$F_{u,s}$	(N/mm²)	Résistance caractéristique à la traction	700	700	700	700	700							
$F_{y,s}$	(N/mm²)	Limite élastique	602	602	602	602	602							
		Section dans	la zone fileté	e										
A_s	(mm²)	Section dans la zone filetée	36,6	58,0	84,3	157,0	245,0							
$F_{u,s}$	(N/mm²)	Résistance caractéristique à la traction	650	650	650	700	700							
$F_{y,s}$	(N/mm²)	Limite élastique	559	559	559	602	602							

	DONNÉES D'INSTALLATION												
MÉTRIQU	JE		M8	M10	M12	M16	M20						
Code			APA408XXX	APA410XXX	APA412XXX	APA416XXX	APA420XXX						
d _o	Diamètre du foret	[mm]	8	10	12	16	20						
T _{ins}	Couple d'installation	[Nm]	15	30	60	100	200						
d_f	Diamètre du filetage sur la plaque à fixer	[mm]	9	12	14	18	22						
h ₁	Profondeur minimale du perçage	[mm]	60	75	85	105	125						
h _{nom}	Profondeur d'installation	[mm]	55	68	80	97	114						
h_{ef}	Profondeur effective	[mm]	48	60	70	85	100						
h _{min}	Épaisseur minimale du matériau de base	[mm]	100	120	140	170	200						
t _{fix}	Épaisseur maximale à fixer*	[mm]	L-66	L-80	L-96	L-117	L-138						
S _{cr,N}	Distance critique entre chevilles	[mm]	144	180	210	255	300						
C _{cr,N}	Distance critique au bord	[mm]	72	90	105	127,5	150						
S _{cr,sp}	Distance critique à fissuration	[mm]	164	204	238	290	380						
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	82	102	119	145	190						
S _{min}	Distance minimale entre chevilles	[mm]	42	47	57	75	100						
C _{min}	Distance minimale au bord	[mm]	47	52	62	75	90						
SW	Clé d'installation		13	17	19	24	30						

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
1	2	3
4	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

					Ré	sistanc	e carac	téris	ique N _{Rk} y V _{Rk}						
		TRACTI	ON						C	ISAILLEN	MENT				
	Métrique		M8	M10	M12 M16 M20				Métrique		M8	M10	M12	M16	M20
N_{Rk}	Béton non fissuré	[kN]	12,00	16,00	22,00	38,60	49,20	V	Béton non fissuré	[kN]	11,90	18,90	27,40	55,00	98,39
$N_{\rm Rk}$	Béton fissuré	[kN]	8,50	14,00	19,00	26,99	34,44	V	Béton fissuré	[kN]	11,45	18,90	27,40	53,97	68,87

						Résista	ance de	calc	ul N _{Rd} y V _{Rd}						
		TRACTI	ON				CISAILLEMENT								
	Métrique		M8	M8 M10 M12 M16 M20					Métrique		M8	M10	M12	M16	M20
N_{Rd}	Béton non fissuré	[kN]	8,00	10,67	12,22	21,44	27,33	VR	Béton non fissuré	[kN]	9,50	15,10	21,90	44,00	78,70
$N_{\rm Rd}$	Béton fissuré	[kN]	5,67	9,33	10,56	14,99	19,13	VR	Béton fissuré	[kN]	9,20	15,10	21,90	43,20	55,10

	Charge maximale recommandée N _{rec} y V _{rec}														
	TRACTION								CISAILLEMENT						
Métrique M8 M10 M12 M16 M20				M20		Métrique		M8	M10	M12	M16	M20			
$N_{\rm rec}$	Béton non fissuré	[kN]	5,71	7,62	8,73	15,32	19,52	V_{rec}	Béton non fissuré	[kN]	7,60	12,10	17,50	35,20	52,50
$N_{\rm rec}$	Béton fissuré	[kN]	4,05	6,67	7,54	10,71	13,67	$V_{\rm rec}$	Béton fissuré	[kN]	6,10	12,10	17,50	28,80	44,10

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 12/0397

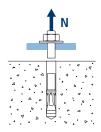
Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 12/0397.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

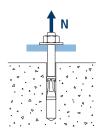
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix. com

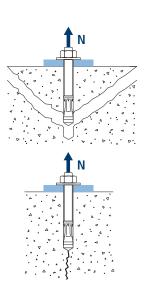

CHARGES DE TRACTION

• Résistance de calcul de l'acier:


 $N_{Rd,p}^{}=N_{Rd,p}^{o}\bullet\Psi_{c}$ • Résistance de calcul par arrachement:

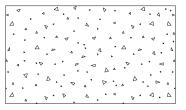
 $\begin{array}{ll} \cdot \text{ Résistance de calcul par cone de béton:} & N_{\text{Rd,c}} = N^{\circ}_{\text{Rd,c}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}} \\ \cdot \text{ Résistance de calcul par fissuration du béton:} & N_{\text{Rd,sp}} = N^{\circ}_{\text{Rd,c}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}} \\ \end{array}$

	Résistance de calcul de l'acier											
	$N_{Rd,s}$											
	Métrique		M8	M10	M12	M16	M20					
N_{Rd}^{o}	Béton non fissuré	[kN]	13,21	20,60	30,33	47,67	81,67					

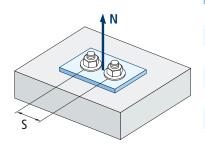


	Résistance de calcul par arrachement											
	$N_{Rd,p} = N^{\circ}_{Rd,p} \cdot \Psi_{c}$											
	Métrique		M8	M10	M12	M16	M20					
$N_{Rd,p}^{o}$	N° Béton non fissuré		8,00	10,67	12,22	*	*					
$N^o_{Rd,p}$	Béton fissuré	[kN]	2,78	*	*							

 $^{^*}$ L'échec par arrachement n'est pas décisif

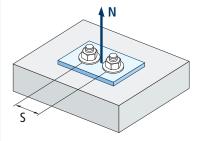

	Résistance de calcul par cône de béton										
	$N_{Rd,c} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$										
	Ré	sistance	de calcul par	fissuration (du béton*						
	$N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$										
	Métrique		M8	M10	M12	M16	M20				
$N_{\text{Rd,c}}^{\text{o}}$	N° Rd,c Béton non fissuré [kN] 10,91 15,24 16,01 21,42 27,33										
$N^o_{\text{Rd,c}}$	Béton fissuré	[kN]	7,63	10,67	11,20	14,99	19,13				

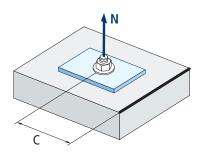
Coefficients d'influence



Influence de la résistance du béton pour arrachement Ψ_{c}											
M8 M10 M12 M16 M20											
	C 20/25			1,00							
w	C 30/37	1,01	1,00	1,09	1,09	1,17					
Ψ _c	C 40/50	1,02	1,00	1,15	1,16	1,32					
	C 50/60	1,02	1,00	1,20	1,22	1,44					

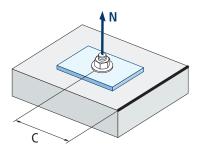
Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$										
M8 M10 M12 M16 M										
	C 20/25			1,00						
	C 30/37			1,22						
Ψ_{b}	C 40/50			1,41						
	C 50/60			1,55						


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

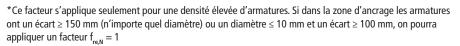

$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

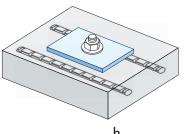
	Influence distance entre chevilles (cône de béton) $\Psi_{s,N}$									
, ,			MTP-A4							
s [mm]	M8	M10	M12	M16	M20					
42	0,65									
47	0,66	0,63	Va	loure non admir	0.5					
50	0,67	0,64	Va	lieurs non admis	eurs non admises					
55	0,69	0,65								
57	0,70	0,66	0,64							
60	0,71	0,67	0,64							
65	0,73	0,68	0,65							
70	0,74	0,69	0,67							
80	0,78	0,72	0,69							
85	0,80	0,74	0,70	0,67						
90	0,81	0,75	0,71	0,68						
100	0,85	0,78	0,74	0,70	0,67					
105	0,86	0,79	0,75	0,71	0,68					
110	0,88	0,81	0,76	0,72	0,68					
120	0,92	0,83	0,79	0,74	0,70					
125	0,93	0,85	0,80	0,75	0,71					
126	0,94	0,85	0,80	0,75	0,71					
128	0,94	0,86	0,80	0,75	0,71					
130	0,95	0,86	0,81	0,75	0,72					
135	0,97	0,88	0,82	0,76	0,73					
144	1,00	0,90	0,84	0,78	0,74					
150		0,92	0,86	0,79	0,75					
164		0,96	0,89	0,82	0,77					
170		0,97	0,90	0,83	0,78					
180		1,00	0,93	0,85	0,80					
195			0,96	0,88	0,83					
200			0,98	0,89	0,83					
204			0,99	0,90	0,84					
210			1,00	0,91	0,85					
220	0,93									
238	0,97									
252	Valeurs sans réduction = 1 0,99 0,92									
255				1,00	0,93					
290					0,98					
300					1,00					

Influence distance entre chevilles (fissuration) $\Psi_{s,sp}$										
			MTP-A4							
s [mm]	M8	M10	M12	M16	M20					
42	0,63									
47	0,64	0,62	V							
50	0,65	0,62	Valeurs non admises							
55	0,67	0,63								
57	0,67	0,64	0,62							
60	0,68	0,65	0,63							
65	0,70	0,66	0,64							
70	0,71	0,67	0,65							
80	0,74	0,70	0,67							
85	0,76	0,71	0,68	0,65						
90	0,77	0,72	0,69	0,66						
100	0,80	0,75	0,71	0,67	0,63					
105	0,82	0,76	0,72	0,68	0,64					
110	0,84	0,77	0,73	0,69	0,64					
120	0,87	0,79	0,75	0,71	0,66					
125	0,88	0,81	0,76	0,72	0,66					
126	0,88	0,81	0,76	0,72	0,67					
128	0,89	0,81	0,77	0,72	0,67					
130	0,90	0,82	0,77 0,72	0,72	0,67					
135	0,91	0,83	0,78	0,73	0,68					
144	0,94	0,85	0,80	0,75	0,69					
150	0,96	0,87	0,82	0,76	0,70					
164	1,00	0,90	0,84	0,78	0,72					
170		0,92	0,86	0,79	0,72					
180		0,94	0,88	0,81	0,74					
195		0,98	0,91	0,84	0,76					
200		0,99	0,92	0,84	0,76					
204		1,00	0,93	0,85	0,77					
210			0,94	0,86	0,78					
220			0,96	0,88	0,79					
238			1,00	0,91	0,81					
252				0,93	0,83					
255	Valeurs sans réduction = 1 0,94									
290				1,00	0,88					
300					0,89					
380					1,00					


$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

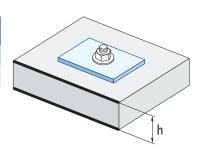
$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsp}} + \frac{0.15 \cdot c^2}{C_{crsp}^2} \le 1$$


Influence distance au bord du béton (fissuration) $\Psi_{c,sp}$											
e [mm]			MTP-A4								
c [mm]	M8	M10	M12	M16	M20						
47	0,69										
50	0,71		Va	loure non admir							
52	0,73	0,64	0,64 Valeurs non admi								
60	0,80	0,70									
62	0,81	0,71	0,65								
65	0,84	0,73	0,67								
70	0,89	0,76	0,70								
72	0,90	0,78	0,71								
75	0,93	0,80	0,72	0,65							
80	0,98	0,83	0,75								
82	1,00	0,85	0,77	0,68							
85		0,87	0,78	0,69							
90		0,91	0,81	0,62							
100		0,98	0,88	0,77	0,65						
102		1,00	0,89	0,78	0,66						
105			0,91	0,79	0,67						
110			0,94	0,82	0,69						
119			1,00	0,86	0,72						
125				0,89	0,74						
127,5				0,91	0,75						
135				0,95	0,78						
145	Valeu	0,82									
150	0,84										
155	0,86										
190					1,00						


Influence distance au bord du béton (cône de béton) $\Psi_{c,N}$									
c [mm]			MTP-A4						
C [IIIIII]	M8	M10	M12	M16	M20				
47	0,74								
50	0,77		Valeurs non admises						
52	0,79	0,69	valeurs non aumises						
60	0,87	0,75							
62	0,89	0,77	0,70						
65	0,92	0,79	0,72						
70	0,98	0,83	0,75						
72	1,00	0,85	0,76						
75		0,87	0,78	0,70					
80		0,91	0,82	0,72					
82		0,93	0,83	0,73					
85		0,96	0,85	0,75					
90		1,00	0,89	0,78	0,70				
100			0,96	0,83	0,75				
102			0,98	0,85	0,76				
105			1,00	0,86	0,77				
110				0,89	0,80				
119				0,95	0,84				
125				0,98	0,87				
127,5	Valeu	0,88							
135		0,92							
145		0,97							
150									

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

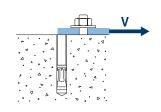
Influence d'armature Ψ _{re,N}									
			MTP-A4						
$\Psi_{re,N}$	M8	M10	M12	M16	M20				
,	0,74	0,8	0,85	1,00	1,00				



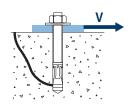
$$\Psi_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$$

Influence de l'épaisseur du matériau de base $\Psi_{ extstyle{h,sp}}$											
					l	MTP-A4	ļ.				
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
	Ψ _{h.sp}	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

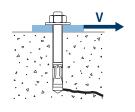

CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,\,{
m V}_{{
m Rd,s}}$


 Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$

Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

Résis	tance de	calcul de l'a	cier sans bra	s de levier						
$V_{Rd,s}$										
Métrique		M8	M10	M12	M16	M20				
V _{Rd.s}	[kN]	13,21	22,07	32,50	51,07	87,50				

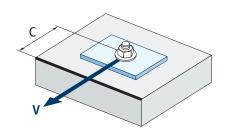


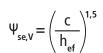
Résista	Résistance de calcul par écaillage *								
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$									
Métrique	M8	M10	M12	M16	M20				
k	1	2	2	2	2				

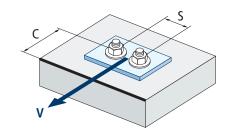
^{*} $N_{Rd,c}^{o}$ Résistance de calcul de traction par cône de béton

		Résistance de	calcul par ru	ıpture du bor	d du béton		
		$V_{Rd,c} = V_{Rd}^{o}$,c • Ψ _b • Ψ _{se,V}	• Ψ _{c,V} • Ψ _{re,V} •	$\Psi_{\alpha,V} \cdot \Psi_{h,V}$		
Métrique M8 M10 M12 M16 M2							
\/0	Béton non fissuré	[kN]	6,2	8,9	9,6	13,2	17,4
V ^o _{Rd,c}	Béton fissuré	[kN]	4,4	6,4	6,9	9,4	12,4

Coefficients d'influence

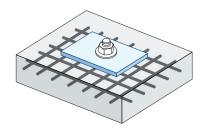

	Influence de	la résistance d	Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$											
		M8	M10	M12	M16	M20								
	C 20/25			1,00										
111	C 30/37			1,22										
$\Psi_{_{\mathbf{b}}}$	C 40/50			1,41										
	C 50/60			1,55										

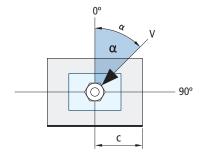



A	4 4 4 4
	ρ · Δ Δ
^ ~ ~ ^ ^	* * * * * *
	^ · · · · ·
· · · · · · · · · · · · · · · · · · ·	
D	۵ ۰ ۰ ۰ ۵
P . D . V . 4	▶ • △ . △

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

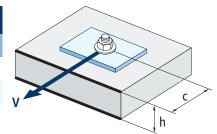

		Influence distance au bord et distance entre chevilles $\Psi_{s_{e,V}}$																
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,V} = \left(\frac{d}{c}\right)^{0,20}$$

Influence distance au bord du béton Ψ _{c,ν}											
a [mana]			MTP-A4								
c [mm]	M8	M10	M12	M16	M20						
50	0,69										
55	0,68		Vo	laure nan admi							
60	0,67	0,70	Vd	leurs non admi:	ses						
70	0,65	0,68	0,70								
80	0,63	0,66	0,68								
85	0,62	0,65	0,68	0,72							
90	0,62	0,64	0,67	0,71							
100	0,60	0,63	0,65	0,69	0,72						
105	0,60	0,62	0,65	0,69	0,72						
110	0,59	0,62	0,64	0,68	0,71						
120	0,58	0,61	0,63	0,67	0,70						
125	0,58	0,60	0,63	0,66	0,69						
128	0,57	0,60	0,62	0,66	0,69						
130	0,57	0,60	0,62	0,66	0,69						
135	0,57	0,59	0,62	0,65	0,68						
140	0,56	0,59	0,61	0,65	0,68						
150	0,56	0,58	0,60	0,64	0,67						
160	0,55	0,57	0,60	0,63	0,66						
170	0,54	0,57	0,59	0,62	0,65						
175	0,54	0,56	0,59	0,62	0,65						
180	0,54	0,56	0,58	0,62	0,64						
190	0,53	0,55	0,58	0,61	0,64						
200	0,53	0,55	0,57	0,60	0,63						
210	0,52	0,54	0,56	0,60	0,62						
220	0,52	0,54	0,56	0,59	0,62						
230	0,51	0,53	0,55	0,59	0,61						
240	0,51	0,53	0,55	0,58	0,61						
250	0,50	0,53	0,54	0,58	0,60						
260	0,50	0,52	0,54	0,57	0,60						
270	0,49	0,52	0,54	0,57	0,59						
280	0,49	0,51	0,53	0,56	0,59						
290	0,49	0,51	0,53	0,56	0,59						
300	0,48	0,51	0,53	0,56	0,58						

	Influence des	armatures Ψ _{re,V}							
	Sans armature Armature en périmètre Armature en périmètre $\geq \varnothing 12 \text{ mm}$ avec étrier à $\leq 100 \text{ m}$								
Béton non fissuré	1	1	1						
Béton fissuré	1	1,2	1,4						



	1	nfluence	e de l'an	ıgle d'ap	plicatio	n de la	charge ⁽	Ψ _{α,ν}		
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
Ψα,ν	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2,5}\right)^2}} \ge 1$$

	Influence de l'épaisseur du matériau de base Ψ _{h,V}											
	MTP-A4											
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5		
$\Psi_{\text{h},\text{V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00		

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

	Résistance caractéristique*											
			TRACTION	CISAILLEMENT								
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20		
RF30	0,70	1,50	2,50	4,70	7,40	0,70	1,50	2,50	4,70	7,40		
RF60	0,60	1,20	2,10	3,90	6,10	0,60	1,20	2,10	3,90	6,10		
RF90	0,40	0,90	1,70	3,10	4,90	0,40	0,90	1,70	3,10	4,90		
RF120	0,40	0,80	1,30	2,50	3,90	0,40	0,80	1,30	2,50	3,90		

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

	Charge maximale recommandée												
			TRACTION	CISAILLEMENT									
	M8	M10	M12	M16	M20	M8	M10	M12	M16	M20			
RF30	0,50	1,07	1,79	3,36	5,29	0,50	1,07	1,79	3,36	5,29			
RF60	0,43	0,86	1,50	2,79	4,36	0,43	0,86	1,50	2,79	4,36			
RF90	0,29	0,64	1,21	2,21	3,50	0,29	0,64	1,21	2,21	3,50			
RF120	0,29	0,57	0,93	1,79	2,79	0,29	0,57	0,93	1,79	2,79			

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ	Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ
APA408075	M8 x 75 Ø8	9	С	100	600	APA412130	M12 x 130 Ø12	34	Н	50	200
APA408095	M8 x 95 Ø8	29	Е	100	600	APA412150	M12 x 150 Ø12	54	I	50	100
APA408115	M8 x 115 Ø8	49	G	100	400	APA412180	M12 x 180 Ø12	84	L	50	150
APA408135	M8 x 135 Ø8	69	Н	100	400	APA412200	M12 x 200 Ø12	104	М	50	150
APA410090	M10 x 90 Ø10	10	Е	100	400	APA416125	M16 x 125 Ø16	8	G	25	100
APA410105	M10 x 105 Ø10	25	F	50	300	APA416145	M16 x 145 Ø16	28	I	25	100
APA410115	M10 x 115 Ø10	35	G	50	200	APA416175	M16 x 175 Ø16	58	K	25	50
APA410135	M10 x 135 Ø10	55	Н	50	200	APA416190	M16 x 190 Ø16	73	L	25	50
APA410165	M10 x 165 Ø10	85	К	50	200	APA416220	M16 x 220 Ø16	103	0	25	50
APA410185	M10 x 185 Ø10	105	L	50	150	APA420200	M20 x 200 Ø20	62	М	10	40
APA412110	M12 x 110 Ø12	14	F	50	200	APA420240	M20 x 240 Ø20	102	Р	10	30
APA412120	M12 x 120 Ø12	24	G	50	200	APA420285	M20 x 285 Ø20	147	S	10	20

Cheville à expansion par couple contrôlé à utiliser dans le béton fissuré et non fissuré

Homologuée ETA Option 7. Tige zinguée. Bague zinguée.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-00063.
- ETA 05/0242 option 7.
- · Déclaration des performances DoP MTH.
- · Évaluation de protection au feu MFPA.

DIMENSIONS

M6x60 à M20x270.

PLAGE DE CHARGE DE CALCUL

De 5,3 à 34,3 kN (profondeur standard). De 6,7 à 21,3 kN (profondeur réduite).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

HOMOLOGATIONS

· Option 7 (béton non fissuré).

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- · Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Deux profondeurs d'installation en M8, M10, M12, M16 et M20, ce qui en facilite l'utilisation sur des plaques d'ancrage épaisses ou sur des matériaux base peu épais.
- Disponible sur INDEXcal.

INDEX CAL

MATÉRIAUX

Tige: Acier au carbone estampé à froid, zingué ≥ 5 μm. Rondelle: DIN 125 ou DIN 9021, zinguée ≥ 5 μm.

Écrou: DIN 934, zingué ≥ 5 µm.

Bague: Acier au carbone estampé à froid, zinguée ≥ 40 µm.

APPLICATIONS

- Plaques d'ancrage.
- Supports.
- · Structures.
- · Étagères.
- · Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- · Ascenseurs.
- · Fixation d'échafaudages.

	PROPRIÉTÉS MÉCANIQUES													
			M6	M8	M10	M12	M14	M16	M20					
		Sec	tion dans la	zone du cô	ne									
A_s	(mm ²)	Section dans la zone du cône	14,5	25,5	46,5	68,0	100,2	122,6	216,3					
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	510	510	510	490	490	490	460					
$f_{y,s}$	(N/mm ²)	Limite élastique	440	440	440	410	410	410	375					
		Sec	ction dans l	a zone fileté	е									
A_s	(mm²)	Section dans la zone filetée	20,1	36,6	58,0	84,3	115,0	157,0	245,0					
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	510	510	510	490	490	490	490					
$f_{y,s}$	(N/mm ²)	Limite élastique	440	440	440	410	410	410	410					

			DOI	NNÉES D'IN	ISTALLATIO	ON				
	MÉTRIQ	UE		M6	M8	M10	M12	M14	M16	M20
	Code			AH06XXX	AH08XXX	AH10XXX	AH12XXX	AH14XXX	AH16XXX	AH20XXX
	d_0	Diamètre du foret	[mm]	6	8	10	12	14	16	20
	T _{ins}	Couple d'installation	[Nm]	7	20	35	60	90	120	240
	d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	16	18	22
	h ₁	Profondeur minimale du perçage	[mm]	55	65	75	85	100	110	135
	h _{nom}	Profondeur d'installation	[mm]	49,5	59,5	66,5	77	91	103,5	125
ard	h_{ef}	Profondeur effective	[mm]	40	48	55	65	75	84	103
tand	h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	110	130	150	168	206
Profondeur standard	t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 58	L - 70	L - 80	L - 92	L - 108	L - 122	L - 147
fond	S _{cr,N}	Distance critique entre chevilles	[mm]	120	144	165	195	225	252	309
Pro	C _{cr,N}	Distance critique au bord	[mm]	60	72	83	98	113	126	155
	S _{cr,sp}	Distance critique à fissuration	[mm]	160	192	220	260	300	280	360
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	80	96	110	130	150	140	180
	h ₁	Profondeur minimale du perçage	[mm]	-	50	60	70	-	90	107
	h _{nom}	Profondeur d'installation	[mm]	-	46,5	53,5	62	-	84,5	97
ite	h_{ef}	Profondeur effective	[mm]	-	35	42	50	-	65	75
rédu	$h_{\scriptscriptstylemin}$	Épaisseur minimale du matériau de base	[mm]	-	100	100	100	-	130	150
deur	t _{fix}	Épaisseur maximale à fixer*	[mm]	-	L-57	L-67	L-77	-	L - 103	L -121
Profondeur réduite	S _{cr,N}	Distance critique entre chevilles	[mm]	-	105	126	150	-	195	225
P.	C _{cr,N}	Distance critique au bord	[mm]	-	53	63	75	-	98	113
	S _{cr,sp}	Distance critique à fissuration	[mm]	-	140	168	200	-	260	300
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	-	70	84	100	-	130	150
	S _{min}	Distance minimale entre chevilles	[mm]	35	40	50	70	80	90	135
	C _{min}	Distance minimale au bord	[mm]	35	40	50	70	80	90	135
	SW	Clé d'installation		10	13	17	19	22	24	30

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
0	2	3
4	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

						F	Résist	ance	carac	téristi	que N _{Rk} y V _{Rk}								
	TRACTION												CISAII	LEME	NT				
	Métrique N			M8	M10	M12	M14	M16	M20		Métrique			M8	M10	M12	M14	M16	M20
N_{Rk}	Profondeur standard	[kN]	7,4	13,0	19,0	25,8	32,0	37,9	51,4	V_{Rk}	Profondeur standard	[kN]	5,1	9,3	14,7	20,6	28,1	38,4	56,3
$N_{\rm Rk}$	Profondeur réduite	[kN]	-	10,0	13,4	17,4	-	25,8	32,0	$V_{\rm Rk}$	Profondeur réduite	[kN]	-	10,2	13,4	17,4	-	38,4	63,9

							Rés	istan	ce de	calcu	N _{Rd} y V _{Rd}								
			TRA	CTION	١								CISAII	LEME	NT				
	Métrique M6 N			M8	M10	M12	M14	M16	M20		Métrique			M8	M10	M12	M14	M16	M20
N_{Rd}	Profondeur standard	[kN]	5,3	9,3	12,7	17,2	21,3	25,2	34,3	V_{Rd}	Profondeur standard	[kN]	4,1	7,4	11,8	16,5	22,5	30,7	45,0
N_{Rd}	N _{Rd} Profondeur réduite [kN]		-	6,7	8,9	11,6	-	17,2	21,3	$V_{\rm Rd}$	Profondeur réduite	[kN]	-	6,8	8,9	11,6	-	30,7	42,6

						Cha	ge m	axim	ale re	comm	andée N _{rec} y V _r	ec							
	TRACTION												CISAII	LLEME	NT				
	Métrique		M6	M8	M10	M12	M14	M16	M20		Métrique		M6	M8	M10	M12	M14	M16	M20
$N_{\rm rec}$	Profondeur standard	[kN]	3,8	6,6	9,0	12,3	15,2	18,0	24,5	$V_{\rm rec}$	Profondeur standard	[kN]	2,9	5,3	8,4	11,8	16,1	21,9	32,2
$N_{\rm rec}$	Profondeur réduite	[kN]	-	4,8	6,4	8,3	-	12,3	15,2	$V_{\rm rec}$	Profondeur réduite	[kN]	-	4,9	6,4	8,3	-	21,9	30,4

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 05/0242

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 05/0242.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix. com

CHARGES DE TRACTION

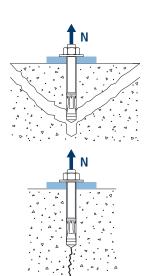
• Résistance de calcul de l'acier: N_{nd}

• Résistance de calcul par arrachement: $N_{Rd,p} = N^o_{\ Rd,p} \bullet \Psi_c$

• Résistance de calcul par cône de béton: $N_{\text{Rd,c}} = N_{\text{Rd,c}}^{\text{o.o.p.}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}}$

Résistance de calcul par fissuration du béton: $N_{Rd,sp} = N_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$

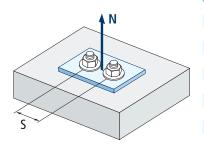
		F	Résistanc	e de calcı	ıl de l'aci	er			
				$N_{\rm Rd,s}$					
	Métrique		M6	M8	M10	M12	M14	M16	M20
N_{Rd}^{o}	Profondeur standard	[kN]	5,3	9,3	16,9	23,8	35,1	42,9	71,1


		Résis	stance de	calcul pa	ar arrache	ement									
	$N_{Rd,p} = N^{\circ}_{Rd,p} \cdot \Psi_{c}$														
	Métrique		M6	M8	M10	M12	M14	M16	M20						
$N_{Rd,p}^{o}$	Profondeur standard	[kN]	_*	-*	12,6	-*	-*	-*	-*						
$N^o_{_{Rd,p}}$	Profondeur réduite	[kN]	-	6,6	_*	-*	-	-*	_*						

^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton												
		Résis	tance de	calcul pa	r cône de	béton							
	$N_{Rd,c} = N_{Rd,c}^{\circ} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$												
	Résistance de calcul par fissuration du béton*												
	1	$N_{Rd,sp} =$	No Rd,c	Ψ _b • Ψ _{s,sp} •	Ψ _{c,sp} • Ψ _r	_{e,N} • Ψ _{h,sp}							
	Métrique		M6	M8	M10	M12	M14	M16	M20				
N° Rd,c	N° Rd,c Profondeur standard [kN] 8,3 10,9 13,4 17,2 21,3 25,2 34,3												
$N^{o}_{\text{Rd,c}}$	N° _{Rd,c} Profondeur réduite [kN] - 6,8 8,9 11,6 - 17,2 21,3												

Coefficients d'influence

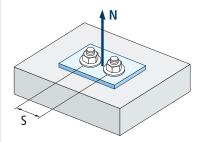


	Inf	luence de	la résistan	ice du béto	on pour arı	achement	:Ψ _c	
		M6	M8	M10	M12	M14	M16	M20
	C 20/25				1,00			
w	C 30/37				1,22			
Ψ_{c}	C 40/50				1,41			
	C 50/60				1,58			

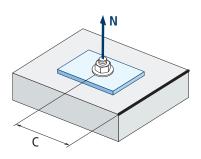
< ✓	4 4 , 0 , 4 4 , 4
Δ ,	δ. σ.
٠.	^ · ^ · · · · · · · · · · · · · · · · ·
Δ.	Δ. Α.
٠,	· · · · · · · · · · · · · · · · · · ·
. 4	Δ
,	
Δ .	P · P · Q · · ◆ P · Q · ∇

Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$										
		M6	M8	M10	M12	M14	M16	M20		
	C 20/25				1,00					
	C 30/37				1,22					
Ψ_{b}	C 40/50				1,41					
	C 50/60				1,58					

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

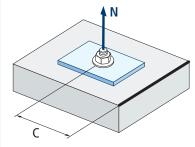


$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$


	Influ	uence distar	nce entre ch	evilles (côr	ne de béton)	ΨͺΝ	
				Profondeur s		5,	
s [mm]	M6	M8	M10	M12	M14	M16	M20
35	0,65						
40	0,67	0,64	0.65				
50 55	0,71 0,73	0,67 0,69	0,65 0,67		Valeurs no	n admises	
60	0,75	0,03	0,68				
65	0,77	0,73	0,70				
70	0,79	0,74	0,71	0,68			
80	0,83	0,78	0,74	0,71			
85	0,85	0,80	0,76	0,72	0,69		
90 100	0,88 0,92	0,81 0,85	0,77 0,80	0,73 0,76	0,70 0,72	0,70	
105	0,92	0,85	0,80	0,76	0,72	0,70	
110	0,96	0,88	0,83	0,78	0,74	0,72	
120	1,00	0,92	0,86	0,81	0,77	0,74	
125		0,93	0,88	0,82	0,78	0,75	
126		0,94	0,88	0,82	0,78	0,75	
128		0,94	0,89	0,83	0,78	0,75	
130		0,95	0,89	0,83	0,79	0,76	0.72
135 144		0,97 1,00	0,91 0,94	0,85 0,87	0,80	0,77 0,79	0,72 0,73
150		1,00	0,94	0,87	0,82	0,79	0,73
165			1,00	0,92	0,87	0,83	0,77
170				0,94	0,88	0,84	0,78
180				0,96	0,90	0,86	0,79
195				1,00	0,93	0,89	0,82
200					0,94	0,90	0,82
210 220					0,97	0,92	0,84
225					0,99 1,00	0,94 0,95	0,86 0,86
252					1,00	1,00	0,91
255		Valeurs	sans réduct	tion = 1		,	0,91
260							0,92
300							0,99
309			D. ATTI	D (1	71.56		1,00
s [mm]	NAC	140		Profondeur		N44.C	1420
40	M6	M8	M10	M12	M14	M16	M20
40		0,69	0.70				
50 55		0,74 0,76	0,70 0,72				
60		0,79	0,74		Valeurs no	n admises	
65		0,81	0,76				
70		0,83	0,78	0,73			
80		0,88	0,82	0,77			
85		0,90	0,84	0,78		0.72	
90 100		0,93 0,98	0,86 0,90	0,80 0,83		0,73 0,76	
105		1,00	0,90	0,85		0,76	
110		.,	0,94	0,87		0,78	
120			0,98	0,90		0,81	
125			1,00	0,92		0,82	
126			1,00	0,92		0,82	
128				0,93		0,83	
130 135				0,93 0,95		0,83 0,85	0,80
144				0,95		0,85	0,80
150				1,00		0,88	0,83
165						0,92	0,87
170						0,94	0,88
180						0,96	0,90
195		Malana	conc. u.f.d.	tion 1		1,00	0,93
200 210		vaieurs	sans réduc	uon = 1			0,94 0,97
220							0,97
225							1.00

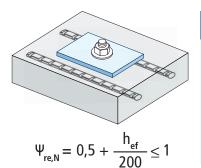
	Inf	fluence dist	ance entre	chevilles (fi	ssuration) Ψ	s.sp	
				Profondeur s		,,sp	
s [mm]	M6	M8	M10	M12	M14	M16	M20
35	0,61						
40	0,63	0,60					
50	0,66	0,63	0,61		Valeurs no	n admicac	
55	0,67	0,64	0,63		valeurs no	ii auiiiises	
60	0,69	0,66	0,64				
65	0,70	0,67	0,65				
70	0,72	0,68	0,66	0,63			
80	0,75	0,71	0,68	0,65	0,63		
85	0,77	0,72	0,69	0,66	0,64		
90	0,78	0,73	0,70	0,67	0,65	0,66	
100	0,81	0,76	0,73	0,69	0,67	0,68	
110	0,84	0,79	0,75	0,71	0,68	0,70	
125	0,89	0,83	0,78	0,74	0,71	0,72	
128	0,90	0,83	0,79	0,75	0,71	0,73	0.00
135	0,92	0,85	0,81	0,76	0,73	0,74	0,69
140 150	0,94 0,97	0,86	0,82	0,77	0,73 0,75	0,75 0,77	0,69 0,71
		0,89	0,84	0,79	0,75		
160 165	1,00	0,92 0,93	0,86 0,88	0,81 0,82	0,77	0,79 0,79	0,72 0,73
168		0,93	0,88	0,82	0,78	0,79	0,73
180		0,97	0,88	0,85	0,78	0,82	0,75
192		1,00	0,94	0,87	0,82	0,84	0,77
200		1,00	0,95	0,88	0,83	0,86	0,78
210			0,98	0,90	0,85	0,88	0,79
220			1,00	0,92	0,87	0,89	0,81
260			.,	1,00	0,93	0,96	0,86
280					0,97	1,00	0,89
288					0,98	, , ,	0,90
300					1,00		0,92
300 336	Va	aleurs sans	réduction =	: 1	1,00		0,92 0,97
	Va	aleurs sans	réduction =	: 1	1,00		
336	Va	aleurs sans	réduction =	: 1	1,00		0,97
336 350 360	Va	aleurs sans		: 1 Profondeur			0,97 0,99
336 350	Va M6	aleurs sans				M16	0,97 0,99
336 350 360			MTH.	Profondeur	réduite	M16	0,97 0,99 1,00
336 350 360 s [mm]		M8	MTH.	Profondeur	réduite	M16	0,97 0,99 1,00
336 350 360 s [mm]		M8 0,64 0,68 0,70	MTH. M10	Profondeur	réduite M14		0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60		M8 0,64 0,68 0,70 0,71	MTH. M10 0,65 0,66 0,68	Profondeur	réduite		0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65		M8 0,64 0,68 0,70 0,71 0,73	MTH. M10 0,65 0,66 0,68 0,69	Profondeur M12	réduite M14		0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70		M8 0,64 0,68 0,70 0,71 0,73 0,75	MTH. M10 0,65 0,66 0,68 0,69 0,71	Profondeur M12	réduite M14		0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74	Profondeur M12 0,68 0,70	réduite M14		0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75	Profondeur M12 0,68 0,70 0,71	réduite M14	n admises	0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77	Profondeur M12 0,68 0,70 0,71 0,73	réduite M14	n admises	0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80	Profondeur M12 0,68 0,70 0,71 0,73 0,75	réduite M14	n admises 0,67 0,69	0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83	Profondeur M12 0,68 0,70 0,71 0,73 0,75 0,78	réduite M14	0,67 0,69 0,71	0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87	Profondeur M12 0,68 0,70 0,71 0,73 0,75 0,78 0,81	réduite M14	0,67 0,69 0,71 0,74	0,97 0,99 1,00
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88	0,68 0,70 0,71 0,73 0,75 0,78 0,81	réduite M14	0,67 0,69 0,71 0,74 0,75	0,97 0,99 1,00 M20
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76	0,97 0,99 1,00 M20
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76	0,97 0,99 1,00 M20
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84	réduite M14	0,67 0,69 0,71 0,75 0,76 0,77	0,97 0,99 1,00 M20
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76	0,97 0,99 1,00 M20
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79	0,97 0,99 1,00 M20 0,73 0,73 0,75 0,77
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82	0,97 0,99 1,00 M20 0,73 0,73 0,75 0,77 0,78
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82	0,97 0,99 1,00 M20 0,73 0,73 0,75 0,77 0,78
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,78 0,80
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,80 0,82
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88 0,90 0,92	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87
336 350 360 s [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220 260		M8 0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	MTH. M10 0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	réduite M14	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88 0,90 0,92	0,97 0,99 1,00 M20 M20 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87 0,93

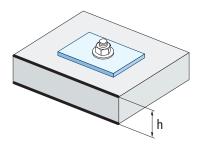
$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot s_{sec}} \le 1$$


$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}^2} \le C_{cr,sp}^2$$

	Influ	uence distai	nce au bord	du béton (fissuration)	Ψ _{c,sp}				
. []			MTH.	Profondeur st	andard					
c [mm]	M6	M8	M10	M12	M14	M16	M20			
35	0,60									
40	0,64	0,58								
50	0,72	0,65	0,61		Valeurs no	n admises				
60	0,81	0,72	0,67							
65	0,86	0,76	0,70							
70	0,90	0,79	0,73	0,66						
75	0,95	0,83	0,76	0,69						
80	1,00	0,87	0,79	0,71	0,66					
83		0,89	0,81	0,73	0,67					
84		0,90	0,82	0,74	0,68					
85		0,91	0,83	0,74	0,68					
90		0,95	0,86	0,77	0,70	0,73				
96		1,00	0,90	0,80	0,73	0,76				
100			0,93	0,82	0,75	0,78				
105			0,96	0,85	0,77	0,81				
110			1,00	0,88	0,80	0,84				
125				0,97	0,87	0,92				
128				0,99	0,89	0,93				
130				1,00	0,90	0,94				
135					0,92	0,97	0,81			
140					0,95	1,00	0,83			
144					0,97		0,85			
150	Va	Valeurs sans réduction = 1								
168										
175										
180							1,00			

e [mm]			MTH.	Profondeur	réduite		
c [mm]	M6	M8	M10	M12	M14	M16	M20
40		0,68					
50		0,78	0,70				
60		0,89	0,78		Valeurs no	n admises	
65		0,94	0,83				
70		1,00	0,87	0,77			
75			0,92	0,81			
80			0,96	0,85			
83			0,99	0,87			
84			1,00	0,88			
85				0,88			
90				0,92		0,77	
96				0,97		0,80	
100				1,00		0,82	
105						0,85	
110						0,88	
125						0,97	
128						0,99	
130		Valeurs	sans réduc	tion = 1		1,00	
135							0,92
144							0,97
150							1,00


	Influe	ence distanc	e au bord d	u béton (cô	ne de bétoi	η) Ψ _{c,N}		
. []			MTH.	Profondeur st	tandard			
c [mm]	M6	M8	M10	M12	M14	M16	M20	
35	0,69							
40	0,75	0,67						
50	0,87	0,77	0,71		Valeurs no	n admises		
53	0,91	0,80	0,73					
60	1,00	0,87	0,79					
63		0,90	0,82					
65		0,92	0,83					
70		0,98	0,88	0,78				
72		1,00	0,90	0,80				
75			0,92	0,82				
80			0,97	0,86	0,78			
83			1,00	0,88	0,80			
85				0,90	0,81			
90				0,94	0,84	0,78		
98				1,00	0,90	0,83		
100					0,91	0,84		
105					0,94	0,87		
110					0,98	0,90		
113					1,00	0,92		
125						0,99		
126						1,00		
128		Valor sin reducción = 1						
135								
150								
155							1,00	

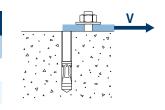

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

e [mm]		MTH. Profondeur réduite										
c [mm]	M6	M8	M10	M12	M14	M16	M20					
40		0,81										
50		0,96	0,84									
53		1,00	0,88		Valeurs no	n admises						
60			0,96									
63			1,00									
65												
70				0,95								
72				0,97								
75				1,00								
80												
83												
85												
90						0,94						
98						1,00						
100												
105												
110												
113												
125		Va	aleurs sans	réduction =	: 1							
126												
128												
135							1,00					

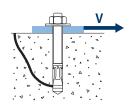
	Influence d'armature $\Psi_{re,N}$												
	MTH. Profondeur standard												
	M6	M8	M10	M12	M14	M16	M20						
Ψ	0,70	0,74	0,77	0,82	0,87	0,92	1,00						
Ψ _{re,N}	MTH. Profondeur réduite												
	M6	M8	M10	M12	M14	M16	M20						
	-	0,67	0,71	0,75	-	0,83	0,88						

*Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart ≥ 150 mm (n'importe quel diamètre) ou un diamètre ≤ 10 mm et un écart ≥ 100 mm, on pourra appliquer un facteur $f_{re,N} = 1$

Influence de l'épaisseur du matériau de base $\Psi_{h,sp}$											
						MTH					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
.,	$\Psi_{h,sp}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

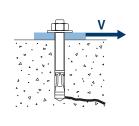

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

CHARGES DE CISAILLEMENT


- Résistance de calcul de l'acier sans bras de levier: $\,V_{{\rm Rd},{\rm s}}\,$

- Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$ - Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

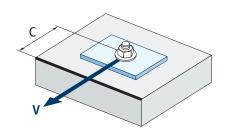
	Résistance de calcul de l'acier sans bras de levier											
	$V_{Rd,s}$											
	Métrique		M6	M8	M10	M12	M14	M16	M20			
$V_{\rm Rd,s}$	V _{Rd,s} Profondeur standard [kN] 4,1 7,4 11,8 16,5 22,5 30,7 45											
$V_{\rm Rd,s}$												

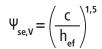


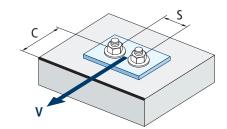
Résistance de calcul par écaillage *											
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$											
Métrique	Métrique M6 M8 M10 M12 M14 M16 M20										
k (Profondeur standard)	1	1	1	2	2	2	2				
k (Profondeur réduite)	k (Profondeur réduite) - 1 1 2 - 2 2										

^{*} $N^{\circ}_{Rd,c}$ Résistance de calcul de traction par cône de béton

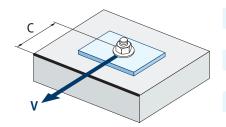
	Résistance de calcul par rupture du bord du béton												
	$V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$												
	Métrique M6 M8 M10 M12 M14 M16 M20												
$V_{\rm Rd,c}^{\rm o}$	V° _{Rd,c} Profondeur standard [kN] 4,6 6,2 7,7 10,2 12,9 15,6 21,8												
$V^{o}_{Rd,c}$	V° Rd,c Profondeur réduite [kN] - 3,6 4,9 6,5 - 10,1 12,8												

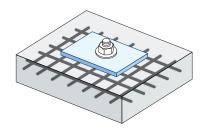

Coefficients d'influence

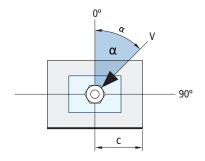

	Influer	ice de la ré	sistance du	béton à la	rupture du	bord du bé	ton Ψ _b	
		M6	M8	M10	M12	M14	M16	M20
	C 20/25				1,00			
	C 30/37				1,22			
Ψ_{b}	C 40/50				1,41			
	C 50/60				1,55			



$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

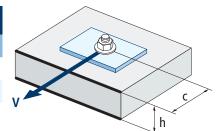

				li	ıfluen	ce dis	tance	au b	ord et	dista	nce e	ntre c	hevill	es Ψ _{se}	, v			
								POl	JR UNE	CHEVI	LLE							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
S/C	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

		Influence	e distance a	u bord du b	oéton Ψ _{c v}		
		_	_	MTH	, v	_	
c [mm]	M6	M10	M10	M12	M14	M16	M20
35	0,70						
40	0,68	0,72					
45	0,67	0,71					
50	0,65	0,69	0,72		Valeurs no	n admises	
55	0,64	0,68	0,71				
60	0,63	0,67	0,70				
70	0,61	0,65	0,68	0,70			
80	0,60	0,63	0,66	0,68	0,71		
85	0,59	0,62	0,65	0,68	0,70		
90	0,58	0,62	0,64	0,67	0,69	0,71	
100	0,57	0,60	0,63	0,65	0,67	0,69	
105	0,56	0,60	0,62	0,65	0,67	0,69	
110	0,56	0,59	0,62	0,64	0,66	0,68	
120	0,55	0,58	0,61	0,63	0,65	0,67	
125	0,54	0,58	0,60	0,63	0,65	0,66	
128	0,54	0,57	0,60	0,62	0,64	0,66	
130	0,54	0,57	0,60	0,62	0,64	0,66	
135	0,54	0,57	0,59	0,62	0,64	0,65	0,68
140	0,53	0,56	0,59	0,61	0,63	0,65	0,68
150	0,53	0,56	0,58	0,60	0,62	0,64	0,67
160	0,52	0,55	0,57	0,60	0,61	0,63	0,66
170	0,51	0,54	0,57	0,59	0,61	0,62	0,65
175	0,51	0,54	0,56	0,59	0,60	0,62	0,65
180	0,51	0,54	0,56	0,58	0,60	0,62	0,64
190	0,50	0,53	0,55	0,58	0,59	0,61	0,64
200	0,50	0,53	0,55	0,57	0,59	0,60	0,63
210	0,49	0,52	0,54	0,56	0,58	0,60	0,62
220	0,49	0,52	0,54	0,56	0,58	0,59	0,62
230	0,48	0,51	0,53	0,55	0,57	0,59	0,61
240	0,48	0,51	0,53	0,55	0,57	0,58	0,61
250	0,47	0,50	0,53	0,54	0,56	0,58	0,60
260	0,47	0,50	0,52	0,54	0,56	0,57	0,60
270	0,47	0,49	0,52	0,54	0,55	0,57	0,59
280	0,46	0,49	0,51	0,53	0,55	0,56	0,59
290	0,46	0,49	0,51	0,53	0,55	0,56	0,59
300	0,46	0,48	0,51	0,53	0,54	0,56	0,58

	Influence des	armatures Ψ _{re,V}	
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm
Béton non fissuré	1	1	1



	ı	nfluence	e de l'ar	igle d'ap	oplicatio	n de la	charge ⁽	Ψ _{α,ν}						
Angle, α(°)	Angle, α(°) 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°													
Ψα,ν	$\Psi_{\alpha,V}$ 1,00 1,01 1,05 1,13 1,24 1,40 1,64 1,97 2,32 2,50													

$$\Psi_{\alpha,\nu} = \sqrt{\frac{1}{\left(\cos\alpha_{\nu}\right)^{2} + \left(\frac{\sin\alpha_{\nu}}{2.5}\right)^{2}}} \geq 1$$

		Infl	uence de	l'épaiss	eur du n	natériau	de base	$\Psi_{h,V}$		
					MTH					
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5
$\Psi_{h,V}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

					ı	Résistanc	e caracté	éristique '	*									
				TRACTION						(CISAILLEMEN	AILLEMENT						
	M6	M8	M10	M12	M14	M16	M20	M6	M8	M10	M12	M14	M16	M20				
RF30	-	0,8	1,5	2,4	3,3	4,5	7,0	-	0,8	1,5	2,4	3,3	4,5	7,0				
RF60	-	0,7	1,2	2,0	2,7	3,6	5,7	-	0,7	1,2	2,0	2,7	3,6	5,7				
RF90	-	0,5	1,0	1,5	2,0	2,7	4,3	-	0,5	1,0	1,5	2,0	2,7	4,3				
RF120	-	0,5	0,8	1,2	1,7	2,3	3,6	-	0,5	0,8	1,2	1,7	2,3	3,6				

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

					Cha	arge max	imale re	comman	dée					
	TRACTION CISAILLEMENT													
	M6	M8	M10	M12	M14	M16	M20	M6	M8	M10	M12	M14	M16	M20
RF30	-	0,6	1,1	1,7	2,4	3,2	5,0	-	0,6	1,1	1,7	2,4	3,2	5,0
RF60	-	0,5	0,9	1,4	1,9	2,6	4,0	-	0,5	0,9	1,4	1,9	2,6	4,0
RF90	-	0,4	0,7	1,1	1,4	2,0	3,1	-	0,4	0,7	1,1	1,4	2,0	3,1
RF120	-	0,3	0,6	0,9	1,2	1,6	2,6	-	0,3	0,6	0,9	1,2	1,6	2,6

[•] Les valeurs de résistance au feu ne sont pas couvertes par l'ETA.

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	Ø	đ	Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	O
AH06060	M6 x 60 Ø6	2	В	200	1.200	AH10170	M10 x 170 Ø10	90	K	50	200
AH06070	M6 x 70 Ø6	12	С	200	1.200	AH10210	M10 x 210 Ø10	130	N	50	150
AH06080	M6 x 80 Ø6	22	D	200	1.200	AH10230	M10 x 230 Ø10	150	Р	50	100
AH06090	M6 x 90 Ø6	32	E	200	1.200	AH12090	M12 x 90 Ø12	13	E	50	200
AH06100	M6 x 100 Ø6	42	E	200	800	AH12100	M12 x 100 Ø12	8	E	50	200
AH06110	M6 x 110 Ø6	52	F	200	800	AH12110	M12 x 110 Ø12	18	F	50	200
AH06120	M6 x 120 Ø6	62	G	100	600	AH12120	M12 x 120 Ø12	28	G	50	200
AH06130	M6 x 130 Ø6	72	Н	100	600	AH12130	M12 x 130 Ø12	38	Н	50	200
AH06140	M6 x 140 Ø6	82	I	100	400	AH12140	M12 x 140 Ø12	48	I	50	200
AH06150	M6 x 150 Ø6	92	Į	100	400	AH12160	M12 x 160 Ø12	68	J	50	100
AH06160	M6 x 160 Ø6	102	J	100	400	AH12180	M12 x 180 Ø12	88	L	50	150
AH06170	M6 x 170 Ø6	112	K	100	400	AH12200	M12 x 200 Ø12	108	М	50	100
AH06180	M6 x 180 Ø6	122	L	100	300	AH12220	M12 x 220 Ø12	128	0	50	100
AH08060	M8 x 60 Ø8	3	В	100	600	AH12250	M12 x 250 Ø12	158	Q	25	50
AH08075	M8 x 75 Ø8	5	С	100	600	AH14120	M14 x 120 Ø14	12	G	25	100
AH08090	M8 x 90 Ø8	20	E	100	600	AH14145	M14 x 145 Ø14	37	I	25	100
AH08100	M8 x 100 Ø8	30	E	100	400	AH14170	M14 x 170 Ø14	62	K	25	100
AH08115	M8 x 115 Ø8	45	G	100	400	AH14220	M14 x 220 Ø14	112	0	25	75
AH08120	M8 x 120 Ø8	50	G	100	400	AH14250	M14 x 250 Ø14	142	Q	25	50
AH08130	M8 x 130 Ø8	60	Н	100	400	AH16125	M16 x 125 Ø16	3	G	25	100
AH08155	M8 x 155 Ø8	85	J	100	200	AH16145	M16 x 145 Ø16	23	I	25	100
AH10070	M10 x 70 Ø10	3	С	100	400	AH16170	M16 x 170 Ø16	48	K	25	50
AH10080	M10 x 80 Ø10	13	D	100	400	AH16220	M16 x 220 Ø16	98	0	25	50
AH10090	M10 x 90 Ø10	10	E	100	400	AH16250	M16 x 250 Ø16	128	Q	25	50
AH10100	M10 x 100 Ø10	20	E	100	400	AH16280	M16 x 280 Ø16	158	S	25	50
AH10120	M10 x 120 Ø10	40	G	50	300	AH20170	M20 x 170 Ø20	23	K	20	40
AH10140	M10 x 140 Ø10	60	ı	50	200	AH20220	M20 x 220 Ø20	73	0	20	40
AH10150	M10 x 150 Ø10	70	1	50	200	AH20270	M20 x 270 Ø20	123	S	20	40
AH10160	M10 x 160 Ø10	80	J	50	200						

Cheville à expansion par couple contrôlé à utiliser dans le béton fissuré et non fissuré

Homologuée ETA Option 7. Tige Atlantis. Bague Atlantis.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-00063.
- ETA 05/0242 option 7.
- · Déclaration des performances DoP MTH.
- Évaluation de protection au feu MFPA.

DIMENSIONS

M6x60 à M20x270.

PLAGE DE CHARGE DE CALCUL

De 5,3 à 34,3 kN (profondeur standard). De 6,7 à 21,3 kN (profondeur réduite).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

Pierre Béton

HOMOLOGATIONS

· Option 7 (béton non fissuré).

CARACTÉRISTIQUES ET AVANTAGES

- · Facile à installer.
- · Emploi sur béton fissuré et non fissuré.
- · Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Deux profondeurs d'installation en M8, M10, M12, M16 et M20, ce qui en facilite l'utilisation sur des plaques d'ancrage épaisses ou sur des matériaux base peu épais.
- Disponible sur INDEXcal.

INDEX CAL

MATÉRIAUX

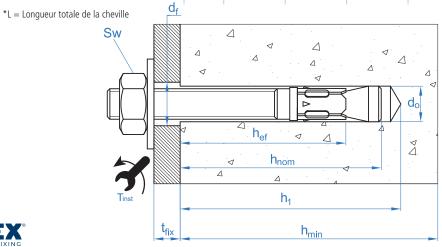
Tige: Acier au carbone estampé à froid, Atlantis $\geq 8 \mu m$. Rondelle: DIN 125 ou DIN 9021, Atlantis $\geq 8 \mu m$.

Écrou: DIN 934, Atlantis ≥ 8 µm.

Bague: Acier au carbone estampé à froid, Atlantis ≥ 8 µm.

APPLICATIONS

- · Plaques d'ancrage.
- Supports.
- · Structures.
- · Étagères.
- · Mobilier urbain.
- · Garde-corps.
- · Caténaires.
- · Ascenseurs.
- · Fixation d'échafaudages.



	PROPRIÉTÉS MÉCANIQUES												
			M6	M8	M10	M12	M16	M20					
		Sect	ion dans la zo	one du cône									
A_s	(mm ²)	Section dans la zone du cône	14,5	25,5	46,5	68,0	122,6	216,3					
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	510	510	510	490	490	460					
$f_{y,s}$	(N/mm ²)	Limite élastique	440	440	440	410	410	375					
		Sec	tion dans la z	one filetée									
A_s	(mm²)	Section dans la zone filetée	20,1	36,6	58,0	84,3	157,0	245,0					
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	510	510	510	490	490	490					
$f_{y,s}$	(N/mm²)	Limite élastique	440	440	440	410	410	410					

			DON	INÉES D'INS	TALLATION				
	MÉTRIQ	UE		M6	M8	M10	M12	M16	M20
	Code			AH06XXX	AH08XXX	AH10XXX	AH12XXX	AH16XXX	AH20XXX
	d_0	Diamètre du foret	[mm]	6	8	10	12	16	20
	T _{ins}	Couple d'installation	[Nm]	7	20	35	60	120	240
	d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	18	22
	h ₁	Profondeur minimale du perçage	[mm]	55	65	75	85	110	135
	h _{nom}	Profondeur d'installation	[mm]	49,5	59,5	66,5	77	103,5	125
ard	h_{ef}	Profondeur effective	[mm]	40	48	55	65	84	103
tand	h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	110	130	168	206
Profondeur standard	t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 58	L - 70	L - 80	L - 92	L - 122	L - 147
fond	S _{cr,N}	Distance critique entre chevilles	[mm]	120	144	165	195	252	309
Pro	C _{cr,N}	Distance critique au bord	[mm]	60	72	83	98	126	155
	S _{cr,sp}	Distance critique à fissuration	[mm]	160	192	220	260	280	360
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	80	96	110	130	140	180
	h ₁	Profondeur minimale du perçage	[mm]	-	50	60	70	90	107
	h _{nom}	Profondeur d'installation	[mm]	-	46,5	53,5	62	84,5	97
<u>i</u>	h_{ef}	Profondeur effective	[mm]	-	35	42	50	65	75
rédu	h _{min}	Épaisseur minimale du matériau de base	[mm]	-	100	100	100	130	150
Profondeur réduite	t _{fix}	Épaisseur maximale à fixer*	[mm]	-	L-57	L-67	L-77	L - 103	L -121
ofon	S _{cr,N}	Distance critique entre chevilles	[mm]	-	105	126	150	195	225
Ā	C _{cr,N}	Distance critique au bord	[mm]	-	53	63	75	98	113
	S _{cr,sp}	Distance critique à fissuration	[mm]	-	140	168	200	260	300
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	-	70	84	100	130	150
	S _{min}	Distance minimale entre chevilles	[mm]	35	40	50	70	90	135
	C _{min}	Distance minimale au bord	[mm]	35	40	50	70	90	135
	SW	Clé d'installation		10	13	17	19	24	30

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

INSTALLATION										
1	2	3								
4	5	6								

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}																	
	TRACTION											CI	SAILLE	MENT				
	Métrique I			M8	M10	M12	M16	M20		Métrique			M6	M8	M10	M12	M16	M20
N_{Rk}	Profondeur standard	[kN]	7,4	13,0	19,0	25,8	37,9	51,4	١	V_{Rk}	Profondeur standard	[kN]	5,1	9,3	14,7	20,6	38,4	56,3
N_{Rk}	Profondeur réduite	[kN]	-	10,0	13,4	17,4	25,8	32,0	١	V_{Rk}	Profondeur réduite	[kN]	-	10,2	13,4	17,4	38,4	63,9

	Résistance de calcul N _{Rd} y V _{Rd}																
	TRACTION										CI	SAILLE	MENT				
	Métrique M6 M8 M10 M12 M16 M20					Métrique		M6	M8	M10	M12	M16	M20				
$N_{\rm Rd}$	Profondeur standard	[kN]	5,3	9,3	12,7	17,2	25,2	34,3	V _R	Profondeur standard	[kN]	4,1	7,4	11,8	16,5	30,7	45,0
N_{Rd}	Profondeur réduite	[kN]	-	6,7	8,9	11,6	17,2	21,3	V_R	Profondeur réduite	[kN]	-	6,8	8,9	11,6	30,7	42,6

	Charge maximale recommandée N _{rec} y V _{rec}																
	TRACTION										CI	SAILLE	MENT				
	Métrique		M6	M8	M10	M12	M16	M20	Métrique			M6	M8	M10	M12	M16	M20
$N_{\rm rec}$	Profondeur standard	[kN]	3,8	6,6	9,0	12,3	18,0	24,5	V_{rec}	Profondeur standard	[kN]	2,9	5,3	8,4	11,8	21,9	32,2
$N_{\rm rec}$	Profondeur réduite	[kN]	-	4,8	6,4	8,3	12,3	15,2	$V_{\rm rec}$	Profondeur réduite	[kN]	-	4,9	6,4	8,3	21,9	30,4

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 05/0242

Version simplifiée de la méthode de calcul selon Eurocode 2 EN 1992-4. La résistance se calcule selon les données reflétées dans l'homologation 05/0242.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- · Influence de l'espace entre chevilles.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

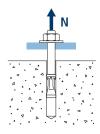
Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site **www.indexfix.com**

MTH-AT

CHARGES DE TRACTION


• Résistance de calcul de l'acier: N_{nd}

• Résistance de calcul par arrachement: $N_{\text{Rd,p}} = N^{\text{o}}_{\text{Rd,p}} \bullet \Psi_{\text{c}}$


 $\text{R\'esistance de calcul par c\^one de b\'eton: } \qquad \qquad N_{\text{Rd,c}}^{\text{res}} = N_{\text{Rd,c}}^{\text{o}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}}$

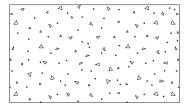
 $\cdot \text{R\'esistance de calcul par fissuration du b\'eton:} \ \ N_{\text{Rd},\text{sp}} = N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}}$

	Résistance de calcul de l'acier											
	$N_{Rd,s}$											
	Métrique		M6	M8	M10	M12	M16	M20				
N_{Rd}^{o}	Profondeur standard	[kN]	5,3	9,3	16,9	23,8	42,9	71,1				

	Résistance de calcul par arrachement											
	$N_{Rd,p} = N^{o}_{Rd,p} \cdot \Psi_{c}$											
	Métrique		M6	M8	M10	M12	M16	M20				
$N_{Rd,p}^{o}$	Profondeur standard	[kN]	_*	_*	12,6	_*	_*	_*				
$N^{o}_{_{Rd,p}}$	Profondeur réduite	[kN]	-	6,6	_*	_*	-*	-*				

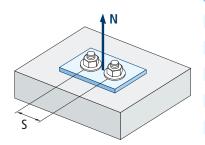
^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton											
	$N_{Rd,c} = N_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$											
	Résistance de calcul par fissuration du béton*											
	$N_{Rd,sp} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$											
	Métrique M6 M8 M10 M12 M16 M20											
$N_{Rd,c}^{o}$	Profondeur standard	[kN]	8,3	10,9	13,4	17,2	25,2	34,3				
$N^o_{\text{Rd,c}}$	Profondeur réduite	[kN]	-	6,8	8,9	11,6	17,2	21,3				



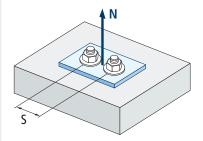
^{*} Résistance par fissuration du béton seulement pour béton non fissuré.

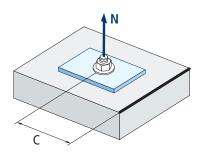
Coefficients d'influence


	Influence de la résistance du béton pour arrachement Ψ_{c}										
		M6	M8	M10	M12	M16	M20				
	C 20/25										
	C 30/37	1,22									
Ψ _c	C 40/50			1,4	41						
	C 50/60	1,58									

Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{\! b}}$										
		M6	M8	M10	M12	M16	M20			
	C 20/25	1,00								
	C 30/37	1,22								
Ψ_{b}	C 40/50			1,	41					
	C 50/60	1,58								

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

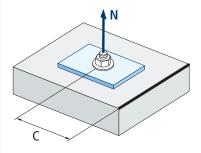

MTH-AT


$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

	Influen	ce di <u>stance e</u>	ntre chevilles	(côn <u>e de bét</u>	on) Ψ	
			MTH-AT. Profo			
s [mm]	M6	M8	M10	M12	M16	M20
35	0,65					
40	0,67	0,64				
50	0,71	0,67	0,65	Vale	eurs non adm	ises
55	0,73	0,69	0,67	Vaic	ars non aan	11303
60	0,75	0,71	0,68			
65	0,77	0,73	0,70	0.60		
70 80	0,79 0,83	0,74 0,78	0,71 0,74	0,68 0,71		
85	0,85	0,78	0,74	0,71		
90	0,88	0,81	0,77	0,73		
100	0,92	0,85	0,80	0,76	0,70	
105	0,94	0,86	0,82	0,77	0,71	
110	0,96	0,88	0,83	0,78	0,72	
120	1,00	0,92	0,86	0,81	0,74	
125		0,93	0,88	0,82	0,75	
126		0,94	0,88	0,82	0,75	
128		0,94	0,89	0,83	0,75	
130		0,95	0,89	0,83	0,76	0 ==
135		0,97	0,91	0,85	0,77	0,72
144		1,00	0,94	0,87	0,79	0,73
150 165			0,95 1,00	0,88 0,92	0,80 0,83	0,74 0,77
170			1,00	0,92	0,83	0,77
180				0,96	0,86	0,79
195				1,00	0,89	0,82
200					0,90	0,82
210					0,92	0,84
220					0,94	0,86
225					0,95	0,86
252					1,00	0,91
255	,	Valeurs sans	réduction = 1			0,91
260						0,92
300						0,99
309			MTH-AT. Profe	andour ráduita		1,00
s [mm]	M6	M8	M10	M12	M16	M20
40	IVIO	0,69	IVITO	IVIIZ	IVITO	IVIZO
50		0,74	0,70			
55		0,76	0,72	Vols	eurs non adm	ione
60		0,79	0,74	Vale	eurs non aum	ises
65		0,81	0,76			
70		0,83	0,78	0,73		
80 85		0,88 0,90	0,82 0,84	0,77 0,78		
90		0,90	0,84	0,78	0,73	
100		0,98	0,90	0,83	0,75	
105		1,00	0,92	0,85	0,77	
110			0,94	0,87	0,78	
120			0,98	0,90	0,81	
125			1,00	0,92	0,82	
126			1,00	0,92	0,82	
128				0,93	0,83	
130				0,93	0,83	2.00
135				0,95	0,85	0,80
144 150				0,98 1,00	0,87 0,88	0,82 0,83
165				1,00	0,88	0,83
170					0,92	0,87
180					0,94	0,88
195					1,00	0,93
200	1	Valeurs sans	réduction = 1			0,94
210						0,97
210 220						0,97 0,99

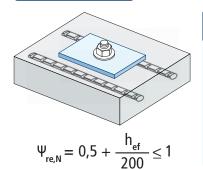
	Influe	ence distance	entre cheville	es (fissuration	l) Ψ _{s,sp}	
			MTH-AT. Profo			
s [mm]	M6	M8	M10	M12	M16	M20
35	0,61					
40	0,63	0,60				
50	0,66	0,63	0,61	Vale	eurs non adm	nises
55	0,67	0,64	0,63	Vaic	ars non dan	
60	0,69	0,66	0,64			
65	0,70	0,67	0,65			
70	0,72	0,68	0,66	0,63		
80	0,75	0,71	0,68	0,65		
85	0,77	0,72	0,69	0,66		
90	0,78	0,73	0,70	0,67	0,66	
100	0,81	0,76	0,73	0,69	0,68	
110	0,84	0,79	0,75	0,71	0,70	
125	0,89	0,83	0,78	0,74	0,72	
128	0,90	0,83	0,79	0,75	0,73	0.50
135	0,92	0,85	0,81	0,76	0,74	0,69
140	0,94	0,86	0,82	0,77	0,75	0,69
150	0,97	0,89	0,84	0,79	0,77	0,71
160	1,00	0,92	0,86	0,81	0,79	0,72
165		0,93	0,88	0,82	0,79	0,73
168		0,94	0,88	0,82	0,80	0,73
180		0,97	0,91	0,85	0,82	0,75
192		1,00	0,94	0,87	0,84	0,77
200			0,95	0,88	0,86	0,78
210			0,98	0,90	0,88	0,79
220			1,00	0,92	0,89	0,81
260				1,00	0,96	0,86
280 288					1,00	0,89
300						0,90
336		Valoure cane	réduction = 1			0,92 0,97
350		valeurs sails	reduction = 1			
360						
						0,99
200			MTH-AT. Prof	ondeur réduite		1,00
s [mm]	M6	M8		ondeur réduite M12	M16	1,00
s [mm]	M6	M8 0.64	MTH-AT. Prof	ondeur réduite M12	M16	
	M6	0,64	M10		M16	1,00
s [mm]	M6	0,64 0,68		M12		1,00 M20
s [mm] 40 50	M6	0,64	M10 0,65	M12	M16 eurs non adm	1,00 M20
s [mm] 40 50 55	M6	0,64 0,68 0,70	M10 0,65 0,66	M12		1,00 M20
s [mm] 40 50 55 60	M6	0,64 0,68 0,70 0,71	0,65 0,66 0,68	M12		1,00 M20
\$ [mm] 40 50 55 60 65	M6	0,64 0,68 0,70 0,71 0,73	0,65 0,66 0,68 0,69	M12 Vale		1,00 M20
s [mm] 40 50 55 60 65 70	M6	0,64 0,68 0,70 0,71 0,73 0,75	0,65 0,66 0,68 0,69 0,71	M12 Vale 0,68		1,00 M20
\$ [mm] 40 50 55 60 65 70 80	M6	0,64 0,68 0,70 0,71 0,73 0,75	0,65 0,66 0,68 0,69 0,71 0,74	Vale 0,68 0,70		1,00 M20
\$ [mm] 40 50 55 60 65 70 80 85	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79	0,65 0,66 0,68 0,69 0,71 0,74 0,75	Vale 0,68 0,70 0,71	eurs non adm	1,00 M20
\$ [mm] 40 50 55 60 65 70 80 85 90	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82	0,65 0,66 0,68 0,69 0,71 0,74 0,75	Vale 0,68 0,70 0,71 0,73	eurs non adm 0,67	1,00 M20
\$ [mm] 40 50 55 60 65 70 80 85 90 100	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87	0,68 0,70 0,71 0,73 0,75 0,78 0,81	0,67 0,69 0,71 0,74	1,00 M20
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82	0,67 0,69 0,71 0,74 0,75	M20
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84	0,67 0,69 0,71 0,74 0,75 0,76	1,00 M20 nises
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85	0,67 0,69 0,71 0,74 0,75 0,76 0,77	1,00 M20 nises
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88	0,67 0,69 0,71 0,74 0,75 0,76 0,77	1,00 M20 nises
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81	1,00 M20 nises
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82	1,00 M20 nises
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,78
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,78 0,80
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,78 0,80 0,82
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,82 0,85 0,87	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,78 0,80 0,82 0,83
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210	M6	0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,78 0,80 0,82 0,83 0,85
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220		0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88 0,90	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220 260		0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88	1,00 M20 nises 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87 0,93
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220 260 280		0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88 0,90	1,00 M20 nises 0,73 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87 0,93 0,97
\$ [mm] 40 50 55 60 65 70 80 85 90 100 110 125 128 135 140 150 160 165 168 180 192 200 210 220 260		0,64 0,68 0,70 0,71 0,73 0,75 0,79 0,80 0,82 0,86 0,89 0,95 0,96 0,98 1,00	0,65 0,66 0,68 0,69 0,71 0,74 0,75 0,77 0,80 0,83 0,87 0,88 0,90 0,92 0,95 0,98 0,99 1,00	0,68 0,70 0,71 0,73 0,75 0,78 0,81 0,82 0,84 0,85 0,88 0,90 0,91 0,92 0,95 0,98 1,00	0,67 0,69 0,71 0,74 0,75 0,76 0,77 0,79 0,81 0,82 0,82 0,85 0,87 0,88 0,90	1,00 M20 nises 0,73 0,73 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87 0,93

$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot s_{crsp}} \le 1$$

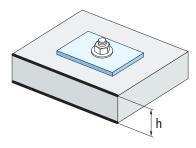

$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}} \le \frac{1}{2}$$

	Influence distance au bord du béton (fissuration) $\Psi_{c,sp}$										
a [mana]			MTH-AT. Profo	ndeur standard							
c [mm]	M6	M8	M10	M12	M16	M20					
35	0,60										
40	0,64	0,58									
50	0,72	0,65	0,61	Vale	eurs non adm	ises					
60	0,81	0,72	0,67								
65	0,86	0,76	0,70								
70	0,90	0,79	0,73	0,66							
75	0,95	0,83	0,76	0,69							
80	1,00	0,87	0,79	0,71							
83		0,89	0,81	0,73							
84		0,90									
85		0,91	0,83	0,74							
90		0,95	0,86	0,77	0,73						
96		1,00	0,90	0,80	0,76						
100			0,93	0,82	0,78						
105			0,96	0,85	0,81						
110			1,00	0,88	0,84						
125				0,97	0,92						
128				0,99	0,93						
130				1,00	0,94						
135					0,97	0,81					
140					1,00	0,83					
144						0,85					
150		Valeurs sans	réduction = 1			0,87					
168						0,95					
175						0,98					
180						1,00					

- [mana]			MTH-AT. Prof	ondeur réduite	2			
c [mm]	M6	M8	M10	M12	M16	M20		
40		0,68						
50		0,78	0,70					
60		0,89	0,78	Valeurs non admises				
65		0,94	0,83					
70		1,00	0,87	0,77				
75			0,92	0,81				
80			0,96	0,85				
83			0,99	0,87				
84			1,00	0,88				
85				0,88				
90				0,92	0,77			
96				0,97	0,80			
100				1,00	0,82			
105					0,85			
110					0,88			
125					0,97			
128					0,99			
130	1	Valeurs sans		1,00				
135						0,92		
144						0,97		
150						1,00		


	Influence	e distance au	bord du béto	n (cône de be	éton) Ψ _{c,N}	
c [mm]			MTH-AT. Profo	ndeur standard	l	
c [mm]	M6	M8	M10	M12	M16	M20
35	0,69					
40	0,75	0,67				
50	0,87	0,77	0,71	Vale	eurs non adm	ises
53	0,91	0,80	0,73			
60	1,00	0,87	0,79			
63		0,90	0,82			
65		0,92	0,83			
70		0,98	0,88	0,78		
72		1,00	0,90	0,80		
75			0,92	0,82		
80			0,97	0,86		
83			1,00	0,88		
85				0,90		
90				0,94	0,78	
98				1,00	0,83	
100					0,84	
105					0,87	
110					0,90	
113					0,92	
125					0,99	
126					1,00	
128		Valor sin re	ducción = 1			
135						0,90
150						0,97
155						1,00

MTH-AT	
ти пъ	

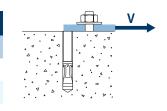

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

- []		MTH-AT. Profondeur réduite									
c [mm]	M6	M8	M10	M12	M16	M20					
40		0,81									
50		0,96	0,84								
53		1,00	0,88	Vale	eurs non adm	ises					
60			0,96								
63			1,00								
65											
70				0,95							
72				0,97							
75				1,00							
80											
83											
85											
90					0,94						
98					1,00						
100											
105											
110											
113											
125		Valeur	s sans réduct	ion = 1							
126											
128											
135						1,00					

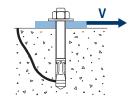
Influence d'armature Ψ _{re,N}										
	MTH-AT. Profondeur standard									
	M6	M8	M10	M12	M16	M20				
Ψ	0,70	0,74	0,77	0,82	0,92	1,00				
Ψ _{re,N}	MTH-AT. Profondeur réduite									
	M6	M8	M10	M12	M16	M20				
	-	0,67	0,71	0,75	0,83	0,88				

*Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart ≥ 150 mm (n'importe quel diamètre) ou un diamètre ≤ 10 mm et un écart ≥ 100 mm, on pourra appliquer un facteur $f_{re,N} = 1$

Influence de l'épaisseur du matériau de base $\Psi_{h,\mathrm{sp}}$											
		MTH-AT									
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
	$\Psi_{\text{h,sp}}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

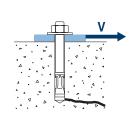

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1,5$$

CHARGES DE CISAILLEMENT


- Résistance de calcul de l'acier sans bras de levier: $\,V_{{\rm Rd},{\rm s}}\,$

- Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$ - Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

	Résistance de calcul de l'acier sans bras de levier									
	$V_{Rd,s}$									
	Métrique		M6	M8	M10	M12	M16	M20		
$V_{\rm Rd,s}$	Profondeur standard	[kN]	4,1	7,4	11,8	16,5	30,7	45,0		
$V_{\rm Rd,s}$	Profondeur réduite	[kN]	-	7,4	11,8	16,5	30,7	45,0		

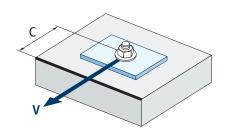


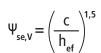
Résistance de calcul par écaillage *									
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$									
Métrique	M6	M8	M10	M12	M16	M20			
k (Profondeur standard)	1	1	1	2	2	2			
k (Profondeur réduite)	-	1	1	2	2	2			

^{*} $N^{\circ}_{Rd,c}$ Résistance de calcul de traction par cône de béton

	Résistance de calcul par rupture du bord du béton									
$V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$										
	Métrique		M6	M8	M10	M12	M16	M20		
$V_{\rm Rd,c}^{\rm o}$	Profondeur standard	[kN]	4,6	6,2	7,7	10,2	15,6	21,8		
$V_{\rm Rd,c}^{\rm o}$	Profondeur réduite	[kN]	-	3,6	4,9	6,5	10,1	12,8		

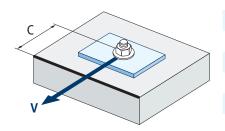
Coefficients d'influence

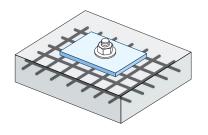

Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$										
		M6	M8	M10	M12	M16	M20			
	C 20/25	1,00								
	C 30/37	1,22								
Ψ_{b}	C 40/50	1,41								
	C 50/60			1,	55					

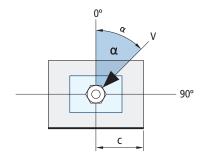


A	4 4 , 4 ,
	ρ· Δ Δ
Δ . A . Δ	^ · ^ ~ ^
	۵ . ۵ . ۵
Δ	Δ
, ,	, v

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

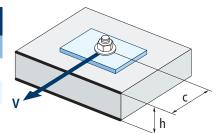

				lr	nfluen	ice dis	stance	au b	ord et	dista	nce e	ntre c	hevill	es Ψ _{se}	e,V			
								POl	JR UNE	CHEV	LLE							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

		nfluence dist	ance au bord	du béton Ψ _c ,	J.	
				H-AT		
c [mm]	M6	M10	M10	M12	M16	M20
35	0,70					
40	0,68	0,72				
45	0,67	0,71				
50	0,65	0,69	0,72	Vale	eurs non adm	ises
55	0,64	0,68	0,71			
60	0,63	0,67	0,70			
70	0,61	0,65	0,68	0,70		
80	0,60	0,63	0,66	0,68		
85	0,59	0,62	0,65	0,68		
90	0,58	0,62	0,64	0,67	0,71	
100	0,57	0,60	0,63	0,65	0,69	
105	0,56	0,60	0,62	0,65	0,69	
110	0,56	0,59	0,62	0,64	0,68	
120	0,55	0,58	0,61	0,63	0,67	
125	0,54	0,58	0,60	0,63	0,66	
128	0,54	0,57	0,60	0,62	0,66	
130	0,54	0,57	0,60	0,62	0,66	
135	0,54	0,57	0,59	0,62	0,65	0,68
140	0,53	0,56	0,59	0,61	0,65	0,68
150	0,53	0,56	0,58	0,60	0,64	0,67
160	0,52	0,55	0,57	0,60	0,63	0,66
170	0,51	0,54	0,57	0,59	0,62	0,65
175	0,51	0,54	0,56	0,59	0,62	0,65
180	0,51	0,54	0,56	0,58	0,62	0,64
190	0,50	0,53	0,55	0,58	0,61	0,64
200	0,50	0,53	0,55	0,57	0,60	0,63
210	0,49	0,52	0,54	0,56	0,60	0,62
220	0,49	0,52	0,54	0,56	0,59	0,62
230	0,48	0,51	0,53	0,55	0,59	0,61
240	0,48	0,51	0,53	0,55	0,58	0,61
250	0,47	0,50	0,53	0,54	0,58	0,60
260	0,47	0,50	0,52	0,54	0,57	0,60
270	0,47	0,49	0,52	0,54	0,57	0,59
280	0,46	0,49	0,51	0,53	0,56	0,59
290	0,46	0,49	0,51	0,53	0,56	0,59
300	0,46	0,48	0,51	0,53	0,56	0,58

	Influence des armatures $\Psi_{re,V}$								
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm						
Béton non fissuré	1	1	1						



	Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha,V}}$									
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
$\Psi_{\alpha,V}$	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,\nu} = \sqrt{\frac{1}{\left(\cos\alpha_{\nu}\right)^{2} + \left(\frac{\sin\alpha_{\nu}}{2.5}\right)^{2}}} \geq 1$$

	Influence de l'épaisseur du matériau de base $\Psi_{ extsf{h,V}}$									
					MTH-AT					
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5
$\Psi_{h,\nu}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

	Résistance caractéristique*												
			TRAC	TION			CISAILLEMENT						
	M6	M6 M8 M10 M12 M16 M20						M8	M10	M12	M16	M20	
RF30	-	0,8	1,5	2,4	4,5	7,0	-	0,8	1,5	2,4	4,5	7,0	
RF60	-	0,7	1,2	2,0	3,6	5,7	-	0,7	1,2	2,0	3,6	5,7	
RF90	-	0,5	1,0	1,5	2,7	4,3	-	0,5	1,0	1,5	2,7	4,3	
RF120	-	0,5	0,8	1,2	2,3	3,6	-	0,5	0,8	1,2	2,3	3,6	

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

				C	harge ma	ximale rec	ommandé	e					
			TRAC	TION			CISAILLEMENT						
	M6 M8 M10 M12 M16 M20						M6	M8	M10	M12	M16	M20	
RF30	-	0,6	1,1	1,7	3,2	5,0	-	0,6	1,1	1,7	3,2	5,0	
RF60	-	0,5	0,9	1,4	2,6	4,0	-	0,5	0,9	1,4	2,6	4,0	
RF90	-	0,4	0,7	1,1	2,0	3,1	-	0,4	0,7	1,1	2,0	3,1	
RF120	-	0,3	0,6	0,9	1,6	2,6		0,3	0,6	0,9	1,6	2,6	

 $[\]bullet$ Les valeurs de résistance au feu ne sont pas couvertes par l'ETA.

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	Ø		Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	
• AHAT06060	M6 x 60 Ø6	2	В	200	1.200	AHAT12090	M12 x 90 Ø12	13	E	50	200
• AHAT06080	M6 x 80 Ø6	22	D	200	1.200	AHAT12100	M12 x 100 Ø12	8	E	50	200
• AHAT06100	M6 x 100 Ø6	42	E	200	800	AHAT12110	M12 x 110 Ø12	18	F	50	200
AHAT08060	M8 x 60 Ø8	3	В	100	600	AHAT12130	M12 x 130 Ø12	38	Н	50	200
AHAT08075	M8 x 75 Ø8	5	С	100	600	AHAT12140	M12 x 140 Ø12	48	Н	50	200
AHAT08090	M8 x 90 Ø8	20	E	100	600	AHAT12160	M12 x 160 Ø12	68	J	50	100
AHAT08115	M8 x 115 Ø8	45	G	100	400	AHAT12180	M12 x 180 Ø12	88	L	50	150
AHAT08130	M8 x 130 Ø8	60	Н	100	400	AHAT12200	M12 x 200 Ø12	108	М	50	100
AHAT08155	M8 x 155 Ø8	85	J	100	200	AHAT12220	M12 x 220 Ø12	128	0	50	100
AHAT10070	M10 x 70 Ø10	3	С	100	400	AHAT12250	M12 x 250 Ø12	158	Q	25	50
AHAT10080	M10 x 80 Ø10	13	D	100	400	AHAT16125	M16 x 125 Ø16	3	G	25	100
AHAT10090	M10 x 90 Ø10	10	E	100	400	AHAT16145	M16 x 145 Ø16	23	1	25	100
AHAT10100	M10 x 100 Ø10	20	E	100	400	AHAT16170	M16 x 170 Ø16	48	K	25	50
AHAT10120	M10 x 120 Ø10	40	G	50	300	AHAT16220	M16 x 220 Ø16	98	0	25	50
AHAT10140	M10 x 140 Ø10	60	Н	50	200	AHAT16250	M16 x 250 Ø16	128	Q	25	50
AHAT10150	M10 x 150 Ø10	70	I	50	200	AHAT16280	M16 x 280 Ø16	158	S	25	50
AHAT10160	M10 x 160 Ø10	80	J	50	200	AHAT20170	M20 x 170 Ø20	23	K	20	40
AHAT10170	M10 x 170 Ø10	90	K	50	200	AHAT20220	M20 x 220 Ø20	73	0	20	40
AHAT10210	M10 x 210 Ø10	130	N	50	150	AHAT20270	M20 x 270 Ø20	123	S	20	40

[•] Mesures sans agrément pour le feu.

Cheville à expansion par couple contrôlé á utiliser dans le béton non fissuré

MTH-A2

Homologuée ETA Option 7. Tige inoxydable A2. Bague inoxydable A2.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0006.
- ETA 05/0242 option 7.
- Déclaration des performances DoP MTH-A2
- · Evaluation de protection au feu MFPA.

DIMENSIONS

M6x45 à M20x220.

PLAGE DE CHARGE DE CALCUL

De 6,0 à 27,8 kN (profondeur standard). De 5,0 à 8,9 kN (profondeur réduite).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

Pierre Béton

HOMOLOGATIONS

· Option 7 (béton non fissuré).

CARACTÉRISTIQUES ET AVANTAGES

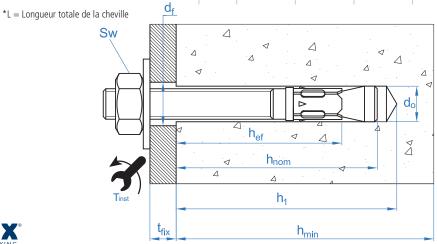
- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- · Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Deux profondeurs d'installation en M8, M10 et M12, ce qui en facilite l'utilisation sur des plaques d'ancrage épaisses ou sur des matériaux base peu épais.
- Version en acier inoxydable A2 (AISI 304).
- Disponible sur INDEXcal.

MATÉRIAUX

Tige: Acier Inoxydable A2. Rondelle: Acier Inoxydable A2. Écrou: Acier Inoxydable A2. Bague: Acier Inoxydable A2.

APPLICATIONS

- · Zones côtières.
- · Zones industrielles.
- · Industries alimentaires.
- · Murs-rideaux.
- · Fixations dans tunnels.
- Supports de tuyauteries.
- · Restauration de façades.
- Pour un usage en extérieur en général.



		PROPRI	ÉTÉS MÉCA	NIQUES				
			M6	M8	M10	M12	M16	M20
		Section	dans la zone	du cône				
A_s	(mm²)	Section dans la zone du cône	14,5	27,3	49,0	70,9	122,7	201,1
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	700	700	700	700	700	700
$f_{y,s}$	(N/mm²)	Limite élastique	500	500	500	500	500	500
		Section	dans la zon	e filetée				
A_s	(mm²)	Section dans la zone filetée	20.1	36.6	58.0	84.3	157.0	245.0
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	600	600	600	600	600	600
$f_{y,s}$	(N/mm ²)	Limite élastique	400	400	400	400	400	400

			DONNÉ	ES D'INSTAI	LLATION				
	MÉTRIQU	IE .		M6	M8	M10	M12	M16	M20
	Code			MI06XXX	MI08XXX	MI10XXX	MI12XXX	MI16XXX	MI20XXX
	d_0	Diamètre du foret	[mm]	6	8	10	12	16	20
	T _{ins}	Couple d'installation	[Nm]	7	20	35	60	120	240
	d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	18	22
	h ₁	Profondeur minimale du perçage	[mm]	55	65	75	85	110	135
	h _{nom}	Profondeur d'installation	[mm]	49,5	59,5	66,5	77	103,5	125
ard	h_{ef}	Profondeur effective	[mm]	40	48	55	65	84	103
tand	h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	110	130	168	206
Profondeur standard	t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 58	L - 70	L - 80	L - 92	L - 122	L - 147
fond	S _{cr,N}	Distance critique entre chevilles	[mm]	120	144	165	195	252	309
Pro	C _{cr,N}	Distance critique au bord	[mm]	60	72	83	98	126	155
	S _{cr,sp}	Distance critique à fissuration	[mm]	160	192	220	260	336	412
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	80	96	110	130	168	206
	h ₁	Profondeur minimale du perçage	[mm]	-	50	60	70	-	-
	h_{nom}	Profondeur d'installation	[mm]	-	46,5	53,5	62	-	-
ite	h_{ef}	Profondeur effective	[mm]	-	35	42	50	-	-
rédu	h _{min}	Épaisseur minimale du matériau de base	[mm]	-	100	100	100	-	-
Profondeur réduite	t _{fix}	Épaisseur maximale à fixer*	[mm]	-	L-57	L-67	L-77	-	-
ofon	S _{cr,N}	Distance critique entre chevilles	[mm]	-	105	126	150	-	-
Ā	C _{cr,N}	Distance critique au bord	[mm]	-	53	63	75	-	-
	S _{cr,sp}	Distance critique à fissuration	[mm]	-	140	168	200	-	-
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	-	70	84	100	-	-
	S _{min}	Distance minimale entre chevilles	[mm]	50	65	70	85	110	135
	C _{min}	Distance minimale au bord	[mm]	50	65	70	85	110	135
	SW	Clé d'installation		10	13	17	19	24	30

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
0	2	3
4	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}																	
	TRACTION											C	ISAILL	EMENT				
	Métrique			M8	M10	M12	M16	M20			Métrique		M6	M8	M10	M12	M16	M20
N_{Rk}	Profondeur standard	[kN]	10,1	12,0	16,0	25,0	35,0	50,0	٧	, Rk	Profondeur standard	[kN]	6,0	10,9	17,4	25,2	47,1	73,5
$N_{\rm Rk}$	Profondeur réduite	[kN]	-	9,0	12,0	16,0	-	-	٧	, Rk	Profondeur réduite	[kN]	-	10,2	13,4	17,4	-	-

	Résistance de calcul N _{Rd} y V _{Rd}																
	TRACTION								CISAILLEMENT								
	Métrique			M8	M10	M12	M16	M20	Métrique			M6	M8	M10	M12	M16	M20
N_{Rd}	Profondeur standard	[kN]	6,0	8,0	8,9	13,9	19,4	27,8	V_{R}	Profondeur standard	[kN]	3,9	7,2	11,4	16,6	31,0	48,4
N_{Rd}	Profondeur réduite	[kN]	-	5,0	6,7	8,9	-	-	V_{R}	Profondeur réduite	[kN]	-	6,8	8,9	11,6	-	-

	Charge maximale recommandée N _{rec} y V _{rec}																
	TRACTION								CISAILLEMENT								
	Métrique			M8	M10	M12	M16	M20	Métrique			M6	M8	M10	M12	M16	M20
$N_{\rm rec}$	Profondeur standard	[kN]	4,3	5,7	6,3	9,9	13,9	19,8	V_{rec}	Profondeur standard	[kN]	2,8	5,1	8,2	11,8	22,1	34,5
$N_{\rm rec}$	Profondeur réduite	[kN]	-	3,6	4,8	6,3	-	-	$V_{\rm rec}$	Profondeur réduite	[kN]	-	4,9	6,5	8,5	-	-

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 05/0242

Version simplifiée de la méthode de calcul selon ETAG 001, annexe C. La résistance se calcule selon les données reflétées dans l'homologation ETA 05/0242.

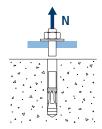
- Influence de la résistance du béton.
- Influence de la distance au bord.
- Influence de l'espace entre chevilles.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

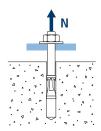
INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix.com

CHARGES DE TRACTION

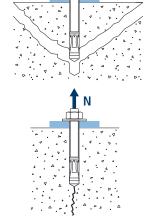

• Résistance de calcul de l'acier: N_{Rd} a

• Résistance de calcul par arrachement: $N_{Rd,p} = N^o_{\ Rd,p} \bullet \Psi_c$


 $\text{R\'esistance de calcul par c\^one de b\'eton: } \qquad \qquad N_{\text{Rd,c}}^{\text{res}} = N_{\text{Rd,c}}^{\text{o}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}}$

 $\cdot \text{R\'esistance de calcul par fissuration du b\'eton:} \ \ N_{\text{Rd},\text{sp}} = N^{\circ}_{\text{Rd},\text{c}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}}$

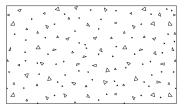
	Résistance de calcul de l'acier												
	$N_{Rd,s}$												
	Métrique		M6	M8	M10	M12	M16	M20					
N_{Rd}^{o}	Profondeur standard	[kN]	6,0	11,4	20,4	29,5	51,1	83,8					



	Résistance de calcul par arrachement											
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c}$											
	Métrique		M6	M8	M10	M12	M16	M20				
$N_{Rd,p}^{\circ}$	Profondeur standard	[kN]	_*	8,00	8,89	13,89	19,44	27,78				
$N^{o}_{_{Rd,p}}$	Profondeur réduite	[kN]	-	5,00	6,67	8,89	-	-				

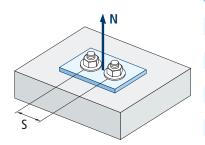
^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton											
	$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$											
	Résistance de calcul par fissuration du béton*											
	$N_{Rd,sp} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$											
	Métrique M6 M8 M10 M12 M16 M20											
$N^{o}_{Rd,c}$	N° Rd,c Profondeur standard [kN] 8,3 10,9 11,1 14,3 21,0 28,6											
$N^o_{Rd,c}$	N° Profondeur réduite [kN] - 6,8 8,9 11,6											



^{*} Résistance par fissuration du béton seulement pour béton non fissuré.

Coefficients d'influence


MTH-A2

	Influence de la résistance du béton pour arrachement Ψ_c												
		M6	M8	M10	M12	M16	M20						
	C 20/25			1,0	00								
	C 30/37	1,22											
Ψ _c	C 40/50			1,4	41								
	C 50/60			1,	58								

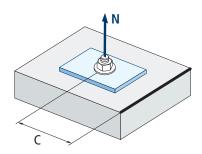
Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{\mathtt{b}}$												
		M6	M8	M10	M12	M16	M20					
	C 20/25			1,	00							
	C 30/37	1,22										
Ψ_{b}	C 40/50			1,-	41							
	C 50/60			1,	58							

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

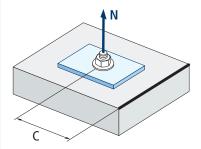
Influence distance entre chevilles (cône de béton) $\Psi_{s,N}$											
[]			MTH-A2. Profo	ondeur standard	d						
s [mm]	M6	M8	M10	M12	M16	M20					
50	0,71										
55	0,73										
60	0,75			Vale	eurs non adm	ises					
65	0,77	0,73									
70	0,79	0,74	0,71								
80	0,83	0,78	0,74								
85	0,85	0,80	0,76	0,72							
90	0,88	0,81	0,77	0,73							
100	0,92	0,85	0,80	0,76							
105	0,94	0,86	0,82	0,77							
110	0,96	0,88	0,83	0,78	0,72						
120	1,00	0,92	0,86	0,81	0,74						
125		0,93	0,88	0,82	0,75						
126		0,94	0,88	0,82	0,75						
128		0,94	0,89	0,83	0,75						
130		0,95	0,89	0,83	0,76						
135		0,97	0,91	0,85	0,77	0,72					
144		1,00	0,94	0,87	0,79	0,73					
150			0,95	0,88	0,80	0,74					
165			1,00	0,92	0,83	0,77					
170				0,94	0,84	0,78					
180				0,96	0,86	0,79					
195				1,00	0,89	0,82					
200					0,90	0,82					
210					0,92	0,84					
220					0,94	0,86					
225					0,95	0,86					
252					1,00	0,91					
255		Valeurs sans	réduction = 1			0,91					
260						0,92					
300						0,99					
309						1,00					

a [mama]			MTH-A2. Prof	ondeur réduite		
s [mm]	M6	M8	M10	M12	M16	M20
65		0,81				
70		0,83	0,78			
80		0,88	0,82		Valeurs no	n admises
85		0,90	0,84	0,78		
90		0,93	0,86	0,80		
100		0,98	0,90	0,83		
105		1,00	0,92	0,85		
110			0,94	0,87		
120			0,98	0,90		
125			1,00	0,92		
126			1,00	0,92		
128				0,93		
130				0,93		
135	Valeurs	s sans réduct	ion = 1	0,95		
144				0,98		
150				1,00		


	Influe	ence distance	entre cheville	es (fissuration	ı) Ψ _{s,sp}	
s [mm]			MTH-A2. Profe	ondeur standard	H	
S [IIIII]	M6	M8	M10	M12	M16	M20
50	0,66					
55	0,67					
60	0,69			Vale	eurs non adm	ises
65	0,70	0,67				
70	0,72	0,68	0,66			
80	0,75	0,71	0,68			
85	0,77	0,72	0,69	0,66		
90	0,78	0,73	0,70	0,67		
100	0,81	0,76	0,73	0,69		
110	0,84	0,79	0,75	0,71	0,66	
125	0,89	0,83	0,78	0,74	0,69	
128	0,90	0,83	0,79	0,75	0,69	
135	0,92	0,85	0,81	0,76	0,70	0,66
140	0,94	0,86	0,82	0,77	0,71	0,67
150	0,97	0,89	0,84	0,79	0,72	0,68
160	1,00	0,92	0,86	0,81	0,74	0,69
165		0,93	0,88	0,82	0,75	0,70
168		0,94	0,88	0,82	0,75	0,70
180		0,97	0,91	0,85	0,77	0,72
192		1,00	0,94	0,87	0,79	0,73
200			0,95	0,88	0,80	0,74
210			0,98	0,90	0,81	0,75
220			1,00	0,92	0,83	0,77
260				1,00	0,89	0,82
288					0,93	0,85
300					0,95	0,86
336		Valeurs sans	réduction = 1		1,00	0,91
350						0,92
412						1,00

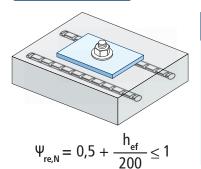
$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

a []			MTH-A2. Prof	ondeur réduite				
s [mm]	M6	M8	M10	M12	M16	M20		
65		0,73						
70		0,75	0,71					
80		0,79	0,74		Valoure ne	on admises		
85		0,80	0,75	0,71	valeurs iic	ni auiiiises		
90		0,82	0,77	0,73				
100		0,86	0,80	0,75				
110		0,89	0,83	0,78				
125		0,95	0,87	0,81				
128		0,96	0,88	0,82				
135		0,98	0,90	0,84				
140		1,00	0,92	0,85				
150			0,95	0,88				
160			0,98	0,90				
165			0,99	0,91				
168			1,00	0,92				
180	Valour	s sans réducti	ion – 1	0,95				
192	valeur	s sans reducti	1011 = 1	0,98				
200				1,00				

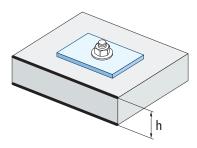


$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsp}} + \frac{0.15 \cdot c^2}{C_{crsp}} \le \frac{1}{2}$$

	Influen	ce distance a	u bord du bé	ton (fissuratio	on) Ψ _{c,sp}	
c [mm]			MTH-A2. Profo	ondeur standard	ŀ	
c [mm]	M6	M8	M10	M12	M16	M20
50	0,72					
60	0,81					
65	0,86	0,76		Vale	eurs non adm	ises
70	0,90	0,79	0,73			
75	0,95	0,83	0,76			
80	1,00	0,87	0,79			
83		0,89	0,81			
84		0,90	0,82			
85		0,91	0,83	0,74		
90		0,95	0,86	0,77		
96		1,00	0,90	0,80		
100			0,93	0,82		
105			0,96	0,85		
110			1,00	0,88	0,74	
125				0,97	0,81	
128				0,99	0,82	
130				1,00	0,83	
135					0,85	0,74
144					0,89	0,77
150					0,92	0,79
168					1,00	0,86
175		Valeurs sans	réduction = 1			0,88
180						0,90
206						1,00


c [mm]			MTH-A2. Prof	ondeur réduite	2			
C [IIIIII]	M6	M8	M10	M12	M16	M20		
50		0,78						
60		0,89	0,78	0,78				
65		0,94	0,83	Valeurs non admises				
70		1,00	0,87					
75			0,92					
80			0,96					
83			0,99	0,87				
84			1,00	0,88				
85				0,88				
90	Valoum	Valeurs sans réduct		0,92				
96	valeurs	s sans reducti	1011 = 1	0,97				
100				1,00				

	Influence	e distance au	bord du béto	n (cône de b	éton) Ψ _{c,N}	
c [mm]			MTH-A2. Profo	ondeur standard	d	
C [iiiiii]	M6	M8	M10	M12	M16	M20
50	0,87					
53	0,91					
60	1,00			Vale	eurs non adm	ises
63						
65		0,92				
70		0,98	0,88			
72		1,00	0,90			
75			0,92			
80			0,97			
83			1,00			
85				0,90		
90				0,94		
98				1,00		
100						
105						
110					0,90	
113					0,92	
125					0,99	
126					1,00	
128						
135		Valeurs sans	réduction = 1			0,90
150						0,97
155						1,00

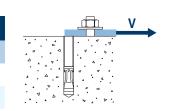

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

c [mm]		MTH-A2. Profondeur réduite									
c [mm]	M6	M8	M10	M12	M16	M20					
65		1,00									
70			1,00	Val	eurs non adm	icoc					
72				valeurs non aumises							
75											
80	Valouw	s sans réducti	iam 1								
83	valeur	s sans reducti	ion = 1								
85				1,00							

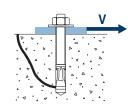
Influence d'armature Ψ _{re,N}									
	MTH-A2. Profondeur standard								
	M6	M8	M8 M10 M12 M16						
Ψ	0,70	0,74	0,77	0,82	0,92	1,00			
Ψ _{re,N}		I	MTH-A2. Prof	ondeur réduite	2				
	M6	M8	M10	M12	M16	M20			
	-	0,67	0,71	0,75	-	-			

*Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart ≥ 150 mm (n'importe quel diamètre) ou un diamètre ≤ 10 mm et un écart ≥ 100 mm, on pourra appliquer un facteur $f_{re,N} = 1$

Influence de l'épaisseur du matériau de base $\Psi_{h,sp}$											
		MTH-A2									
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
	$\Psi_{\text{h,sp}}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

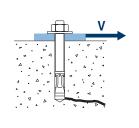

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1,5$$

CHARGES DE CISAILLEMENT


- Résistance de calcul de l'acier sans bras de levier: $\,V_{{\rm Rd},{\rm s}}\,$

- Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$ - Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

	Résistance de calcul de l'acier sans bras de levier							
	$V_{Rd,s}$							
	Métrique		M6	M8	M10	M12	M16	M20
$V_{\rm Rd,s}$	Profondeur standard	[kN]	3,9	7,2	11,4	16,6	31,0	48,4
$V_{\rm Rd,s}$	Profondeur réduite	[kN]	-	7,2	11,4	16,6	-	-

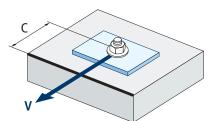


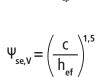
Résistance de calcul par écaillage *						
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$						
Métrique	M6	M8	M10	M12	M16	M20
k (Profondeur standard)	1	1	1	2	2	2
k (Profondeur réduite)	-	1	1	1	-	-

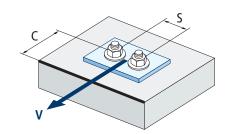
^{*} $N^{\circ}_{Rd,c}$ Résistance de calcul de traction par cône de béton

	R	ésistanc	e de calcul _l	oar rupture	du bord du	béton		
	$V_{Rd,c} = V_{Rd,c}^{\circ} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$							
	Métrique		M6	M8	M10	M12	M16	M20
$V_{\rm Rd,c}^{\rm o}$	Profondeur standard	[kN]	4,6	6,2	7,7	10,2	15,6	21,8
$V_{\text{Rd,c}}^{\text{o}}$	Profondeur réduite	[kN]	-	3,7	4,9	6,6	-	-

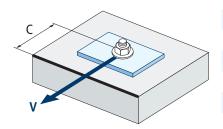
Coefficients d'influence

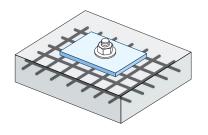

MTH-A2

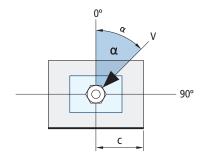

	Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{\! b}}$												
		M6	M8	M10	M12	M16	M20						
	C 20/25			1,0	00								
	C 30/37	1,22											
Ψ_{b}	C 40/50			1,4	41								
	C 50/60			1,!	55								


4. 4	4 4 4 4
	ρ· Δ Δ
Δ Α Δ Δ	^ · ^ ~ · ^
	Δ . Δ . Δ
	`
A	۵
P · D · A	٧٠ ٥. ٢

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

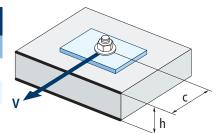

		Influence distance au bord et distance entre chevilles $\Psi_{se,V}$																
		POUR UNE CHEVILLE																
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

		Influence dist	ance au bo <u>rd</u>	du béton Ψૂ,	v	
				I-A2		
c [mm]	M6	M10	M10	M12	M16	M20
40						
45						
50	0,65					
55	0,64			Valeurs no	n admises	
60	0,63					
65	0,62	0,66				
70	0,61	0,65	0,68			
80	0,60	0,63	0,66			
85	0,59	0,62	0,65	0,68		
90	0,58	0,62	0,64	0,67		
100	0,57	0,60	0,63	0,65	0,67	
105	0,56	0,60	0,62	0,65	0,67	
110	0,56	0,59	0,62	0,64	0,66	0,68
120	0,55	0,58	0,61	0,63	0,65	0,67
125	0,54	0,58	0,60	0,63	0,65	0,66
130	0,54	0,57	0,60	0,62	0,64	0,66
135	0,54	0,57	0,59	0,62	0,64	0,65
140	0,53	0,56	0,59	0,61	0,63	0,65
150	0,53	0,56	0,58	0,60	0,62	0,64
160	0,52	0,55	0,57	0,60	0,61	0,63
170	0,51	0,54	0,57	0,59	0,61	0,62
175	0,51	0,54	0,56	0,59	0,60	0,62
180	0,51	0,54	0,56	0,58	0,60	0,62
190	0,50	0,53	0,55	0,58	0,59	0,61
200	0,50	0,53	0,55	0,57	0,59	0,60
210	0,49	0,52	0,54	0,56	0,58	0,60
220	0,49	0,52	0,54	0,56	0,58	0,59
230	0,48	0,51	0,53	0,55	0,57	0,59
240	0,48	0,51	0,53	0,55	0,57	0,58
250	0,47	0,50	0,53	0,54	0,56	0,58
260	0,47	0,50	0,52	0,54	0,56	0,57
270	0,47	0,49	0,52	0,54	0,55	0,57
280	0,46	0,49	0,51	0,53	0,55	0,56
290	0,46	0,49	0,51	0,53	0,55	0,56
300	0,46	0,48	0,51	0,53	0,54	0,56

	Influence des armatures Ψ _{re,V}											
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm									
Béton non fissuré	1	1	1									



	Influence de l'angle d'application de la charge $\Psi_{m{lpha},m{ m V}}$													
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°				
$\Psi_{\alpha,V}$	$\Psi_{\alpha,V}$ 1,00 1,01 1,05 1,13 1,24 1,40 1,64 1,97 2,32 2,50													

$$\Psi_{\alpha,\nu} = \sqrt{\frac{1}{\left(\cos\alpha_{\nu}\right)^{2} + \left(\frac{\sin\alpha_{\nu}}{2,5}\right)^{2}}} \geq 1$$

	Influence de l'épaisseur du matériau de base Ψ _{h,v}												
	MTH-A2												
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5			
$\Psi_{h,\nu}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00			

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

					Résistan	ce caracté	ristique*						
			TRAC	TION			CISAILLEMENT						
	M6	M8	M10	M12	M16	M20	M6	M8	M10	M12	M16	M20	
RF30	-	0,8	1,5	2,4	4,5	7,0	-	0,8	1,5	2,4	4,5	7,0	
RF60	-	0,7	1,2	2,0	3,6	5,7	-	0,7	1,2	2,0	3,6	5,7	
RF90	-	0,5	1,0	1,5	2,7	4,3	-	0,5	1,0	1,5	2,7	4,3	
RF120	-	0,5	0,8	1,2	2,3	3,6	-	0,5	0,8	1,2	2,3	3,6	

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

				C	Charge ma	ximale rec	ommandé	e				
			TRAC	TION		CISAILLEMENT						
	M6	M8	M10	M12	M16	M20	M6	M8	M10	M12	M16	M20
RF30	-	0,6	1,1	1,7	3,2	5,0	-	0,6	1,1	1,7	3,2	5,0
RF60	-	0,5	0,9	1,4	2,6	4,0	-	0,5	0,9	1,4	2,6	4,0
RF90	-	0,4	0,7	1,1	2,0	3,1	-	0,4	0,7	1,1	2,0	3,1
RF120	-	0,3	0,6	0,9	1,6	2,6	-	0,3	0,6	0,9	1,6	2,6

[•] Les valeurs de résistance au feu ne sont pas couvertes par l'ETA.

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ	Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ
•• MI06045	M6 x 45 Ø6	1	А	200	1.200	MI10090	M10 x 90 Ø10	10	E	100	400
• MI06060	M6 x 60 Ø6	2	В	200	1.200	MI10120	M10 x 120 Ø10	40	G	50	300
• MI06080	M6 x 80 Ø6	22	D	200	1.200	MI10150	M10 x 150 Ø10	70	I	50	200
• MI06120	M6 x 120 Ø6	62	G	100	600	• MI12075	M12 x 75 Ø12	5	С	50	300
• MI06140	M6 x 140 Ø6	82	I	100	600	MI12090	M12 x 90 Ø12	13	E	50	200
• MI06160	M6 x 160 Ø6	102	J	100	400	MI12110	M12 x 110 Ø12	18	F	50	200
• MI06170	M6 x 170 Ø6	112	K	100	800	MI12140	M12 x 140 Ø12	48	I	50	200
• MI06180	M6 x 180 Ø6	122	L	100	600	• MI16090	M16 x 90 Ø16	4	E	25	150
• MI08050	M8 x 50 Ø8	4	А	100	800	MI16145	M16 x 145 Ø16	23	I	25	100
MI08075	M8 x 75 Ø8	5	С	100	600	MI16170	M16 x 170 Ø16	48	K	25	75
MI08090	M8 x 90 Ø8	20	E	100	600	• MI20120	M20 x 120 Ø20	5	G	20	40
MI08115	M8 x 115 Ø8	45	G	100	400	MI20170	M20 x 170 Ø20	23	K	20	40
MI10070	M10 x 70 Ø10	3	С	100	400	MI20220	M20 x 220 Ø20	73	0	20	40

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

[•] Mesures sans agrément pour le feu.

Cheville à expansion par couple contrôlé á utiliser dans le béton non fissuré

Homologuée ETA Option 7. Tige inoxydable A4. Bague inoxydable A4.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique avec tige filetée à expansion par couple contrôlé.

DOCUMENTS OFFICIELS

- AVCP-1219-CPR-0006.
- ETA 05/0242 option 7.
- Déclaration des performances DoP MTH-A4
- Evaluation de protection au feu MFPA.

DIMENSIONS

M6x45 à M20x220.

PLAGE DE CHARGE DE CALCUL

De 6,0 à 27,8 kN (profondeur standard). De 5,0 à 8,9 kN (profondeur réduite).

MATÉRIAU DE BASE

Béton de qualité C20/25 à C50/60 non fissuré.

HOMOLOGATIONS

· Option 7 (béton non fissuré).

CARACTÉRISTIQUES ET AVANTAGES

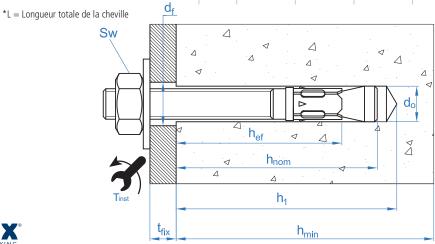
- · Facile à installer.
- Emploi sur béton fissuré et non fissuré.
- · Apte pour charges moyennes et élevées.
- Installation préalable, ou directement à travers le trou de l'épaisseur à fixer.
- Différentes longueurs et diamètres: flexibilité pour le montage.
- · Pour charges statiques ou quasi-statiques.
- Deux profondeurs d'installation en M8, M10 et M12, ce qui en facilite l'utilisation sur des plaques d'ancrage épaisses ou sur des matériaux base peu épais.
- · Version en acier inoxydable A4 (AISI 316).
- Disponible sur INDEXcal.

MATÉRIAUX

Tige: Acier Inoxydable A4. Rondelle: Acier Inoxydable A4. Écrou: Acier Inoxydable A44. Bague: Acier Inoxydable A4.

APPLICATIONS

- · Zones côtières.
- · Zones industrielles.
- · Industries alimentaires.
- · Murs-rideaux.
- · Fixations dans tunnels.
- · Supports de tuyauteries.
- · Restauration de façades.
- Pour un usage en extérieur en général.



PROPRIÉTÉS MÉCANIQUES												
			M6	M8	M10	M12	M16	M20				
		Section	dans la zone	du cône								
A_s	(mm²)	Section dans la zone du cône	14,5	27,3	49,0	70,9	122,7	201,1				
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	700	700	700	700	700	700				
$f_{y,s}$	(N/mm ²)	Limite élastique	500	500	500	500	500	500				
		Section	dans la zon	e filetée								
A_s	(mm²)	Section dans la zone filetée	20.1	36.6	58.0	84.3	157.0	245.0				
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	600	600	600	600	600	600				
$f_{y,s}$	(N/mm ²)	Limite élastique	400	400	400	400	400	400				

	DONNÉES D'INSTALLATION										
	MÉTRIQU	E		M6	M8	M10	M12	M16	M20		
	Code			MIA406XXX	MIA408XXX	MIA410XXX	MIA412XXX	MIA416XXX	MIA420XXX		
	d_0	Diamètre du foret	[mm]	6	8	10	12	16	20		
	T _{ins}	Couple d'installation	[Nm]	7	20	35	60	120	240		
	d _f ≤	Diamètre du filetage sur la plaque à fixer	[mm]	7	9	12	14	18	22		
	h ₁	Profondeur minimale du perçage	[mm]	55	65	75	85	110	135		
	h _{nom}	Profondeur d'installation	[mm]	49,5	59,5	66,5	77	103,5	125		
ard	h_{ef}	Profondeur effective	[mm]	40	48	55	65	84	103		
tand	h _{min}	Épaisseur minimale du matériau de base	[mm]	100	100	110	130	168	206		
Profondeur standard	t _{fix}	Épaisseur maximale à fixer*	[mm]	L - 58	L - 70	L - 80	L - 92	L - 122	L - 147		
fond	S _{cr,N}	Distance critique entre chevilles	[mm]	120	144	165	195	252	309		
Pro	C _{cr,N}	Distance critique au bord	[mm]	60	72	83	98	126	155		
	S _{cr,sp}	Distance critique à fissuration	[mm]	160	192	220	260	336	412		
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	80	96	110	130	168	206		
	h ₁	Profondeur minimale du perçage	[mm]	-	50	60	70	-	-		
	h _{nom}	Profondeur d'installation	[mm]	-	46,5	53,5	62	-	-		
ite	h_{ef}	Profondeur effective	[mm]	-	35	42	50	-	-		
rédu	h _{min}	Épaisseur minimale du matériau de base	[mm]	-	100	100	100	-	-		
deur	t _{fix}	Épaisseur maximale à fixer*	[mm]	-	L-57	L-67	L-77	-	-		
Profondeur réduite	S _{cr,N}	Distance critique entre chevilles	[mm]	-	105	126	150	-	-		
Ā	C _{cr,N}	Distance critique au bord	[mm]	-	53	63	75	-	-		
	S _{cr,sp}	Distance critique à fissuration	[mm]	-	140	168	200	-	-		
	C _{cr,sp}	Distance critique au bord à fissuration	[mm]	-	70	84	100	-	-		
	S _{min}	Distance minimale entre chevilles	[mm]	50	65	70	85	110	135		
	C _{min}	Distance minimale au bord	[mm]	50	65	70	85	110	135		
	SW	Clé d'installation		10	13	17	19	24	30		

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

	INSTALLATION	
0	2	3
4	5	6

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}																
	TRACTION										C	ISAILL	EMENT				
	Métrique			M8	M10	M12	M16	M20		Métrique			M8	M10	M12	M16	M20
N_{Rk}	Profondeur standard	[kN]	10,1	12,0	16,0	25,0	35,0	50,0	V _{Rk}	Profondeur standard	[kN]	6,0	10,9	17,4	25,2	47,1	73,5
$N_{\rm Rk}$	Profondeur réduite	[kN]	-	9,0	12,0	16,0	-	-	V _{Rk}	Profondeur réduite	[kN]	-	10,2	13,4	17,4	-	-

	Résistance de calcul N _{Rd} y V _{Rd}																
	TRACTION										(ISAILL	EMENT	Ī			
	Métrique			M8	M10	M12	M16	M20		Métrique			M8	M10	M12	M16	M20
N_{Rd}	Profondeur standard	[kN]	6,0	8,0	8,9	13,9	19,4	27,8	V _R	Profondeur standard	[kN]	3,9	7,2	11,4	16,6	31,0	48,4
N_{Rd}	Profondeur réduite	[kN]	-	5,0	6,7	8,9	-	-	V_R	Profondeur réduite	[kN]	-	6,8	8,9	11,6	-	-

	Charge maximale recommandée N _{rec} y V _{rec}																
	TRACTION								CISAILLEMENT								
	Métrique			M8	M10	M12	M16	M20		Métrique			M8	M10	M12	M16	M20
$N_{\rm rec}$	Profondeur standard	[kN]	4,3	5,7	6,3	9,9	13,9	19,8	V _{re}	Profondeur standard	[kN]	2,8	5,1	8,2	11,8	22,1	34,5
$N_{\rm rec}$	Profondeur réduite	[kN]	-	3,6	4,8	6,3	-	-	V	Profondeur réduite	[kN]	-	4,9	6,5	8,5	-	-

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 05/0242

Version simplifiée de la méthode de calcul selon ETAG 001, annexe C. La résistance se calcule selon les données reflétées dans l'homologation ETA 05/0242.

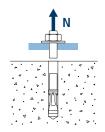
- Influence de la résistance du béton.
- Influence de la distance au bord.
- · Influence de l'espace entre chevilles.
- Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

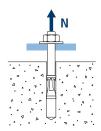
INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix.com

CHARGES DE TRACTION

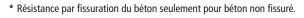

• Résistance de calcul de l'acier: N_{Rd} «

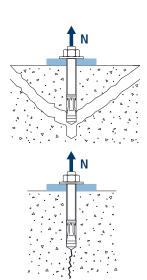
• Résistance de calcul par arrachement: $N_{\text{Rd,p}} = N^{\text{o}}_{\text{Rd,p}} \bullet \Psi_{\text{c}}$


 $\text{R\'esistance de calcul par c\^one de b\'eton: } \qquad \qquad N_{\text{Rd,c}}^{\text{res}} = N_{\text{Rd,c}}^{\text{o}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}}$

 $\cdot \text{R\'esistance de calcul par fissuration du b\'eton:} \quad N_{\text{Rd},\text{sp}} = N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}}$

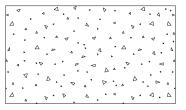
	Résistance de calcul de l'acier											
$N_{Rd,s}$												
	Métrique M6 M8 M10 M12 M16 M.											
N_{Rd}^{o}	Profondeur standard	[kN]	6,0	11,4	20,4	29,5	51,1	83,8				

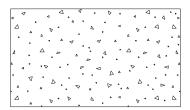


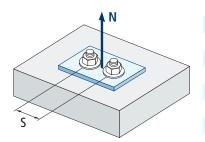

	Résistance de calcul par arrachement											
	$N_{Rd,p} = N_{Rd,p}^{\circ} \cdot \Psi_{c}$											
	Métrique		M6	M8	M10	M12	M16	M20				
$N_{Rd,p}^{\circ}$	Profondeur standard	[kN]	_*	8,00	8,89	13,89	19,44	27,78				
$N^{o}_{_{Rd,p}}$	Profondeur réduite	[kN]	-	5,00	6,67	8,89	-	-				

^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton											
$N_{Rd,c} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$												
	Résistance de calcul par fissuration du béton*											
$N_{Rd,sp} = N^{o}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,sp} \cdot \Psi_{c,sp} \cdot \Psi_{re,N} \cdot \Psi_{h,sp}$												
	Métrique M6 M8 M10 M12 M16 M20											
$N^{o}_{Rd,c}$	N° Rd,c Profondeur standard [kN] 8,3 10,9 11,1 14,3 21,0 28,6											
$N^{o}_{Rd,c}$	Profondeur réduite	[kN]	-	6,8	8,9	11,6	-	-				

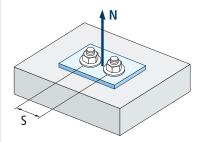



Coefficients d'influence


	Influence de la résistance du béton pour arrachement Ψ_{c}												
		M6	M8	M10	M12	M16	M20						
	C 20/25			1,0	00								
	C 30/37	1,22											
Ψ _c	C 40/50			1,4	41								
	C 50/60			1,	58								

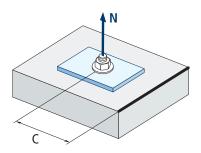
Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{\rm b}$												
		M6	M16	M20								
	C 20/25			1,	00							
	C 30/37	1,22										
Ψ_{b}	C 40/50			1,	41							
	C 50/60			1,	58							

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$


$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

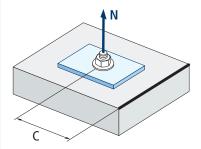
Influence distance entre chevilles (cône de béton) $\Psi_{s,N}$											
			MTH-A4. Profo	ondeur standard	l						
s [mm]	M6	M8	M10	M12	M16	M20					
50	0,71										
55	0,73										
60	0,75			Vale	eurs non adm	ises					
65	0,77	0,73									
70	0,79	0,74	0,71								
80	0,83	0,78	0,74								
85	0,85	0,80	0,76	0,72							
90	0,88	0,81	0,77	0,73							
100	0,92	0,85	0,80	0,76							
105	0,94	0,86	0,82	0,77							
110	0,96	0,88	0,83	0,78	0,72						
120	1,00	0,92	0,86	0,81	0,74						
125		0,93	0,88	0,82	0,75						
126		0,94	0,88	0,82	0,75						
128		0,94	0,89	0,83	0,75						
130		0,95	0,89	0,83	0,76						
135		0,97	0,91	0,85	0,77	0,72					
144		1,00	0,94	0,87	0,79	0,73					
150			0,95	0,88	0,80	0,74					
165			1,00	0,92	0,83	0,77					
170				0,94	0,84	0,78					
180				0,96	0,86	0,79					
195				1,00	0,89	0,82					
200					0,90	0,82					
210					0,92	0,84					
220					0,94	0,86					
225					0,95	0,86					
252					1,00	0,91					
255		Valeurs sans	réduction = 1			0,91					
260						0,92					
300						0,99					
309						1,00					

a [mama]			MTH-A4. Prof	ondeur réduite		
s [mm]	M6	M8	M10	M12	M16	M20
65		0,81				
70		0,83	0,78			
80		0,88	0,82		Valeurs no	n admises
85		0,90	0,84	0,78		
90		0,93	0,86	0,80		
100		0,98	0,90	0,83		
105		1,00	0,92	0,85		
110			0,94	0,87		
120			0,98	0,90		
125			1,00	0,92		
126			1,00	0,92		
128				0,93		
130				0,93		
135	Valeurs	s sans réduct	ion = 1	0,95		
144				0,98		
150				1,00		


	Influe	ence distance	entre cheville	es (fissuratior	η) Ψ _{s,sp}	
a [mana]			MTH-A4. Profe	ondeur standard	H	
s [mm]	M6	M8	M10	M12	M16	M20
50	0,66					
55	0,67					
60	0,69			Vale	eurs non adm	ises
65	0,70	0,67				
70	0,72	0,68	0,66			
80	0,75	0,71	0,68			
85	0,77	0,72	0,69	0,66		
90	0,78	0,73	0,70	0,67		
100	0,81	0,76	0,73	0,69		
110	0,84	0,79	0,75	0,71	0,66	
125	0,89	0,83	0,78	0,74	0,69	
128	0,90	0,83	0,79	0,75	0,69	
135	0,92	0,85	0,81	0,76	0,70	0,66
140	0,94	0,86	0,82	0,77	0,71	0,67
150	0,97	0,89	0,84	0,79	0,72	0,68
160	1,00	0,92	0,86	0,81	0,74	0,69
165		0,93	0,88	0,82	0,75	0,70
168		0,94	0,88	0,82	0,75	0,70
180		0,97	0,91	0,85	0,77	0,72
192		1,00	0,94	0,87	0,79	0,73
200			0,95	0,88	0,80	0,74
210			0,98	0,90	0,81	0,75
220			1,00	0,92	0,83	0,77
260				1,00	0,89	0,82
288					0,93	0,85
300					0,95	0,86
336	,	Valeurs sans	réduction = 1		1,00	0,91
350						0,92
412						1,00

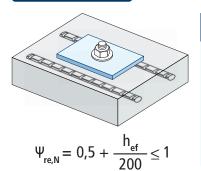
$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

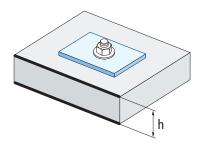
a [mama]			MTH-A4. Pro	fondeur réduite			
s [mm]	M6	M8	M10	M12	M16	M20	
65		0,73					
70		0,75	0,71				
80		0,79	0,74		Valoure ne	on admises	
85		0,80	0,75	0,71	valeurs iid	ni auiiiises	
90		0,82	0,77	0,73			
100		0,86	0,80	0,75			
110		0,89	0,83	0,78			
125		0,95	0,87	0,81			
128		0,96	0,88	0,82			
135		0,98	0,90	0,84			
140		1,00	0,92	0,85			
150			0,95	0,88			
160			0,98	0,90			
165			0,99	0,91			
168			1,00	0,92			
180	Valour	s sans réducti	ion – 1	0,95			
192	valeur	s sans reducti	1011 = 1	0,98			
200				1,00			


$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{crsp}} + \frac{0.15 \cdot c^2}{C_{crsp}} \le \frac{1}{2}$$

	Influen	Influence distance au bord du béton (fissuration) $\Psi_{_{\!\scriptscriptstyle C,Sp}}$							
c [mm]			MTH-A4. Profo	ndeur standard	ŀ				
c [mm]	M6	M8	M10	M12	M16	M20			
50	0,72								
60	0,81								
65	0,86	0,76		Vale	eurs non adm	ises			
70	0,90	0,79	0,73						
75	0,95	0,83	0,76						
80	1,00	0,87	0,79						
83		0,89	0,81						
84		0,90	0,82						
85		0,91	0,83	0,74					
90		0,95	0,86	0,77					
96		1,00	0,90	0,80					
100			0,93	0,82					
105			0,96	0,85					
110			1,00	0,88	0,74				
125				0,97	0,81				
128				0,99	0,82				
130				1,00	0,83				
135					0,85	0,74			
144					0,89	0,77			
150					0,92	0,79			
168					1,00	0,86			
175		Valeurs sans	réduction = 1			0,88			
180						0,90			
206						1,00			

c [mm]			MTH-A4. Prof	ondeur réduite	<u>)</u>			
C [IIIIII]	M6	M8	M10	M12	M16	M20		
50		0,78						
60		0,89	0,78					
65		0,94	0,83	Vale	eurs non adm	ises		
70		1,00	0,87					
75			0,92					
80			0,96					
83			0,99	0,87				
84			1,00	0,88				
85				0,88				
90	Valoum	aleurs sans réduction = 1		0,92				
96	valeurs	s sans reducti	1011 = 1					
100								


	Influence	e distance au	bord du béto	n (cône de b	éton) Ψ _{c,N}	
c [mm]			MTH-A4. Profo	ondeur standard	d	
C [IIIII]	M6	M8	M10	M12	M16	M20
50	0,87					
53	0,91					
60	1,00			Vale	eurs non adm	ises
63						
65		0,92				
70		0,98	0,88			
72		1,00	0,90			
75			0,92			
80			0,97			
83			1,00			
85				0,90		
90				0,94		
98				1,00		
100						
105						
110					0,90	
113					0,92	
125					0,99	
126					1,00	
128						
135		Valeurs sans	réduction = 1			0,90
150						0,97
155						1,00

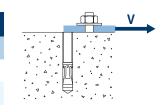

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

c [mm]	MTH-A4. Profondeur réduite									
c [mm]	M6	M8	M10	M12	M16	M20				
65		1,00								
70		1,00 Valours non admires								
72				Valeurs non admises						
75										
80	Valarre	Valeurs sans réduction = 1								
83	valeur	s sans reduct	ion = 1							
85				1.00						

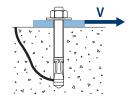
		Influer	nce d'armatu	re Ψ _{re,N}						
	MTH-A4. Profondeur standard									
	M6	M8	M8 M10 M12 M16 M20							
Ψ	0,70	0,74 0,77 0,82 0,92 1,								
Ψ _{re,N}		MTH-A4. Profondeur réduite								
	M6	M8	M20							
	-	0,67	0,71	0,75	-	-				

*Ce facteur s'applique seulement pour une densité élevée d'armatures. Si dans la zone d'ancrage les armatures ont un écart ≥ 150 mm (n'importe quel diamètre) ou un diamètre ≤ 10 mm et un écart ≥ 100 mm, on pourra appliquer un facteur $f_{re,N} = 1$

Influence de l'épaisseur du matériau de base Ψ _{h,sp}											
	MTH-A4										
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
-3	$\Psi_{h,sp}$	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

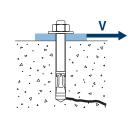

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

CHARGES DE CISAILLEMENT


- Résistance de calcul de l'acier sans bras de levier: $\,{
m V}_{{
m Rd,s}}\,$

- Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N_{Rd,c}^{o}$ - Résistance de calcul par rupture du bord de béton: $V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_b \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$

	Résistance de calcul de l'acier sans bras de levier							
	$V_{Rd,s}$							
	Métrique		M6	M8	M10	M12	M16	M20
$V_{\rm Rd,s}$	Profondeur standard	[kN]	3,9	7,2	11,4	16,6	31,0	48,4
$V_{\rm Rd,s}$	Profondeur réduite	[kN]	-	7,2	11,4	16,6	-	-

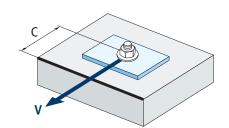


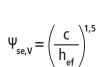
Résistance de calcul par écaillage *						
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$						
Métrique	M6	M8	M10	M12	M16	M20
k (Profondeur standard)	1	1	1	2	2	2
k (Profondeur réduite)	-	1	1	1	-	-

^{*} $N^{\circ}_{Rd,c}$ Résistance de calcul de traction par cône de béton

	R	ésistanc	e de calcul _l	oar rupture	du bord du	béton		
	\	/ _{Rd,c} = \	$V_{Rd,c}^{o} \cdot \Psi_{b} \cdot$	Ψ _{se,V} • Ψ _{c,V} •	$\psi_{\text{re,V}} \bullet \psi_{\alpha,V}$	• Ψ _{h,V}		
	Métrique		M6	M8	M10	M12	M16	M20
$V_{\rm Rd,c}^{\rm o}$	Profondeur standard	[kN]	4,6	6,2	7,7	10,2	15,6	21,8
$V^{o}_{Rd,c}$	Profondeur réduite	[kN]	-	3,7	4,9	6,6	-	-

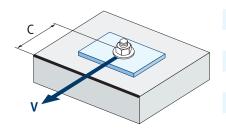
Coefficients d'influence

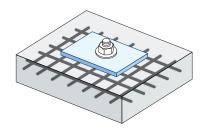

MTH-A4

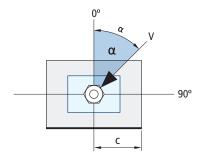

	Influence	de la résista	nce du béto	n à la rupture	e du bord du	béton Ψ _b	
		M6	M8	M10	M12	M16	M20
	C 20/25			1,0	00		
	C 30/37			1,2	22		
Ψ_{b}	C 40/50			1,4	41		
	C 50/60			1,!	55		

A	۵ ، ۵ ، ۰
	Δ Δ . «
^	* · · · ·
	^ . ~ · · ·
· · · · · · · · · · · · · · · · · · ·	
D	Δ Δ
D . D . 4	ν· Δ. Δ

$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \geq 1$$

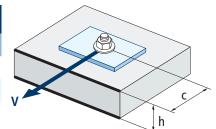

				li	ıfluen	ce dis	tance	au b	ord et	dista	nce e	ntre c	hevill	es Ψ _{se}	, v			
								POl	JR UNE	CHEVI	LLE							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
								POU	R DEUX	CHEV	ILLES							
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
S/C	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1,5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0,5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1,5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

		Influence dist	ance au bo <u>rd</u>	du béton Ψૂ,		
				I-A4		
c [mm]	M6	M10	M10	M12	M16	M20
40						
45						
50	0,65					
55	0,64			Valeurs no	n admises	
60	0,63					
65	0,62	0,66				
70	0,61	0,65	0,68			
80	0,60	0,63	0,66			
85	0,59	0,62	0,65	0,68		
90	0,58	0,62	0,64	0,67		
100	0,57	0,60	0,63	0,65	0,67	
105	0,56	0,60	0,62	0,65	0,67	
110	0,56	0,59	0,62	0,64	0,66	0,68
120	0,55	0,58	0,61	0,63	0,65	0,67
125	0,54	0,58	0,60	0,63	0,65	0,66
130	0,54	0,57	0,60	0,62	0,64	0,66
135	0,54	0,57	0,59	0,62	0,64	0,65
140	0,53	0,56	0,59	0,61	0,63	0,65
150	0,53	0,56	0,58	0,60	0,62	0,64
160	0,52	0,55	0,57	0,60	0,61	0,63
170	0,51	0,54	0,57	0,59	0,61	0,62
175	0,51	0,54	0,56	0,59	0,60	0,62
180	0,51	0,54	0,56	0,58	0,60	0,62
190	0,50	0,53	0,55	0,58	0,59	0,61
200	0,50	0,53	0,55	0,57	0,59	0,60
210	0,49	0,52	0,54	0,56	0,58	0,60
220	0,49	0,52	0,54	0,56	0,58	0,59
230	0,48	0,51	0,53	0,55	0,57	0,59
240	0,48	0,51	0,53	0,55	0,57	0,58
250	0,47	0,50	0,53	0,54	0,56	0,58
260	0,47	0,50	0,52	0,54	0,56	0,57
270	0,47	0,49	0,52	0,54	0,55	0,57
280	0,46	0,49	0,51	0,53	0,55	0,56
290	0,46	0,49	0,51	0,53	0,55	0,56
300	0,46	0,48	0,51	0,53	0,54	0,56

	Influence des	armatures Ψ _{re,} v	
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm
Béton non fissuré	1	1	1



	ı	nfluence	e de l'ar	igle d'ap	oplicatio	n de la	charge ⁽	Ψ _{α,ν}		
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
Ψα,ν	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,\nu} = \sqrt{\frac{1}{\left(\cos\alpha_{\nu}\right)^{2} + \left(\frac{\sin\alpha_{\nu}}{2,5}\right)^{2}}} \geq 1$$

		Infl	uence de	l'épaiss	eur du n	natériau	de base	$\Psi_{h,V}$		
					MTH-A4					
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5
$\Psi_{_{h,V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

RÉSISTANCE AU FEU

					Résistan	ce caracté	ristique*					
			TRAC	TION		CISAILLEMENT						
	M6	M8	M10	M12	M16	M20	M6	M8	M10	M12	M16	M20
RF30	-	0,8	1,5	2,4	4,5	7,0	-	0,8	1,5	2,4	4,5	7,0
RF60	-	0,7	1,2	2,0	3,6	5,7	-	0,7	1,2	2,0	3,6	5,7
RF90	-	0,5	1,0	1,5	2,7	4,3	-	0,5	1,0	1,5	2,7	4,3
RF120	-	0,5	0,8	1,2	2,3	3,6	-	0,5	0,8	1,2	2,3	3,6

^{*}Le facteur de sécurité pour la résistance de calcul sous exposition au feu est M,fi=1 (faute de règlementation nationale). Par conséquent, la Résistance Caractéristique est égale à la Résistance de Calcul.

				C	harge ma	ximale rec	ommandé	e						
			TRAC	TION			CISAILLEMENT							
	M6	M8	M10	M12	M16	M20	M6	M8	M10	M12	M16	M20		
RF30	-	0,6	1,1	1,7	3,2	5,0	-	0,6	1,1	1,7	3,2	5,0		
RF60	-	0,5	0,9	1,4	2,6	4,0	-	0,5	0,9	1,4	2,6	4,0		
RF90	-	0,4	0,7	1,1	2,0	3,1	-	0,4	0,7	1,1	2,0	3,1		
RF120	-	0,3	0,6	0,9	1,6	2,6	-	0,3	0,6	0,9	1,6	2,6		

[•] Les valeurs de résistance au feu ne sont pas couvertes par l'ETA.

GAMME

Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ	Code	Dimensions	Épaisseur max à fiixer	Lettre axe (longueur)	đ	đ
• MIA406045	M6 x 45 Ø6	1	А	200	1.200	• MIA412075	M12 x 75 Ø12	5	С	50	300
MIA406060	M6 x 60 Ø6	2	В	200	1.200	MIA412090	M12 x 90 Ø12	13	E	50	200
MIA406080	M6 x 80 Ø6	22	D	200	1.200	MIA412110	M12 x 110 Ø12	12	F	50	200
• MIA408050	M8 x 50 Ø8	4	А	100	800	MIA412140	M12 x 140 Ø12	42	I	50	200
MIA408075	M8 x 75 Ø8	5	С	100	600	• MIA416090	M16 x 90 Ø16	4	E	25	150
MIA408090	M8 x 90 Ø8	20	E	100	600	MIA416145	M16 x 145 Ø16	23	I	25	100
MIA408115	M8 x 115 Ø8	45	G	100	400	MIA416170	M16 x 170 Ø16	48	K	25	75
MIA410070	M10 x 70 Ø10	3	С	100	400	• MIA420120	M20 x 120 Ø20	5	G	20	80
MIA410090	M10 x 90 Ø10	10	E	100	400	MIA420170	M20 x 170 Ø20	23	K	20	80
MIA410120	M10 x 120 Ø10	40	G	50	300	MIA420220	M20 x 220 Ø20	73	0	20	60
MIA410150	M10 x 150 Ø10	70	I	50	200						

[•] Dimensions non homologuées. Les valeurs de résistance et les données d'installation ne sont pas applicables pour ces références. Pour plus d'information, contactez le Service Technique.

Notes

FOTECMTFR24

REV6

Técnicas Expansivas S.L.P. I. La Portalada II, C/ Segador, 13
26006 · Logroño (La Rioja) · SPAIN

T. (+34) 941.272.131 · E. info@indexfix.com www.indexfix.com