

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 14/0138 of 22/09/2021

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague				
Trade name of the construction product	MO-H, MO-HW, MO-HS steel bonded anchor			
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and uncracked concrete for a working life of 50 and/or 100 years			
Manufacturer	Index Técnicas Expansivas, S.L. P.I. La Portalada II C. Segador 13 26006 Logroño Spain			
Manufacturing plant	Index Plant 1			
This European Technical Assessment contains	18 pages including 14 Annexes which form an integral part of this assessment.			
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Bonded fasteners for use in concrete			
This version replaces	ETA 14/0138 issued on 20/05/2018			

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The MO-H, MO-HW (faster curing time) and MO-HS (extended processing time) with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rod or rebar.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3, C 4
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance for seismic performance categories C1	See Annex C 6

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

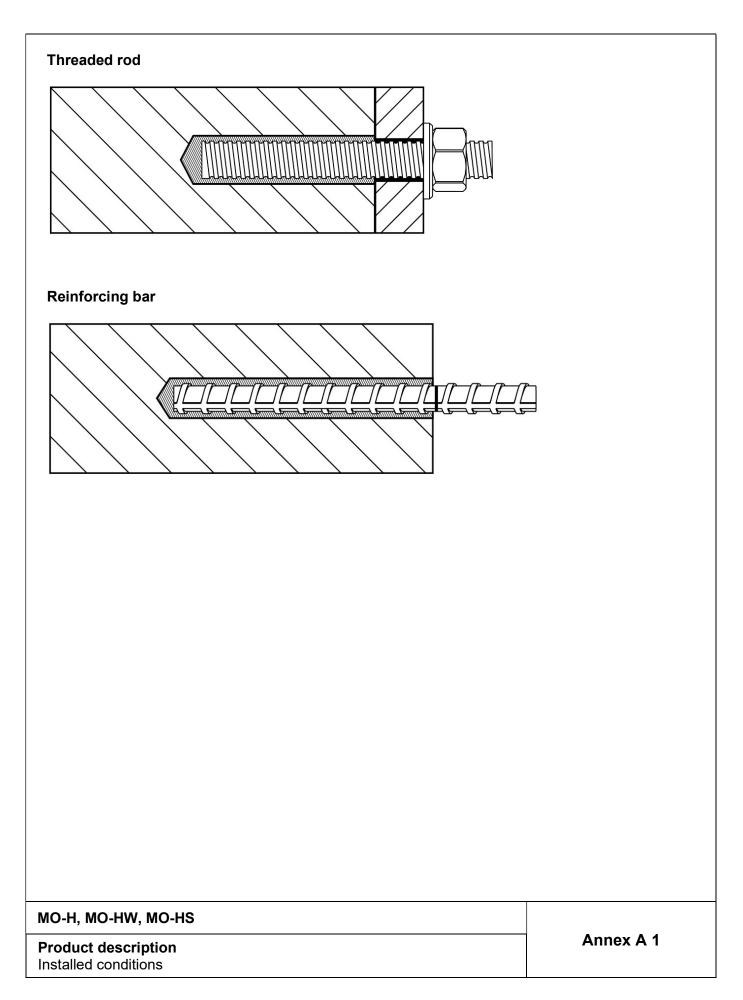
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

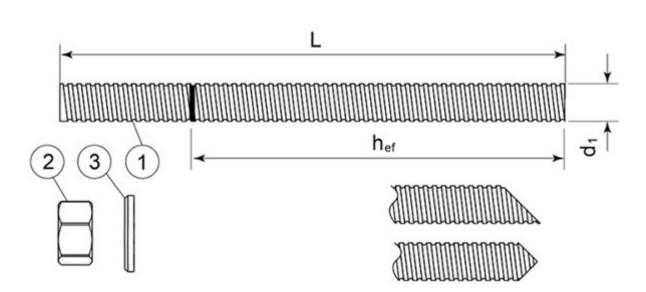
¹ Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 22.09.2021

By Ing. Mária Schaan Head of the Technical Assessment Body


² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Coaxial cartridge (CC) MO-H, MO-HW, MO-HS	150 ml 380 ml 400 ml 410 ml	
Side by side cartridge (SBS) MO-H, MO-HW, MO-HS	350 ml 825 ml	
Two part foil in a single piston c MO-H, MO-HW, MO-HS	somponent cartridge (FCC) 150 ml 170 ml 300 ml 550 ml 850 ml	
Peeler cartridge (PLR) MO-H, MO-HW, MO-HS	280 ml	
Marking of the mortar cartridges Identifying mark of the producer, T and processing time	s rade name, Charge code number, Storaç	ge life, Curing
Mixing nozzle KW		
RC		
RM		
тв		
KR for use with 850		
MO-H, MO-HW, MO-HS		
Product description		Annex A 2

Product description Injection system

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	ation Material			
	, zinc plated ≥ 5 μm acc. to EN ISO				
	, Hot-dip galvanized ≥ 40 μm acc. t , zinc diffusion coating ≥ 15 μm ac		0684 or		
1	Anchor rod	Steel, EN 10087 or EN 10 Property class 4.6, 5.8, 8.8			
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
Stain	less steel				
1	Anchor rod	Material: A2-70, A4-70, A4	4-80, EN ISO 3506		
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
High	corrosion resistant steel				
1	Anchor rod	Material: 1.4529, 1.4565, I	EN 10088-1		
2	Hexagon nut EN ISO 4032	According to threaded rod			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod			
*Galva	anized rod of high strength are sensi	tive to hydrogen induced brittle	failure		
D-H, N	IO-HW, MO-HS				
	t description d rod and materials		Annex A 3		

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	Bars and de	-coiled rods	
Class	B C		
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 te	o 600
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35
Characteristic strain at maximum for	Characteristic strain at maximum force ε_{uk} (%)		
Bendability		Bend/Re	bend test
Maximum deviation from nominal	Nominal bar size (mm)		
mass (individual bar) (%)	≤ 8	±6	6,0
> 8		±4,5	
Bond: Minimum relative rib area,			
f _{R,min}	0,0	40	
	> 12	0,0	56

MO-H, MO-HW, MO-HS

Product description Rebars and materials Annex A 4

Page 8 of 18 ETA 14/0138 issued on 22/09/2021 and replacing ETA 14/0138 issued on 20/05/2018

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load.
- Seismic actions category C1 (max w = 0,5 mm): threaded rod size M10, M12, M16, M20, M24

Base materials

- Uncracked concrete.
- Cracked and uncracked concrete for threaded rod size M10, M12, M16, M20, M24
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

• -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

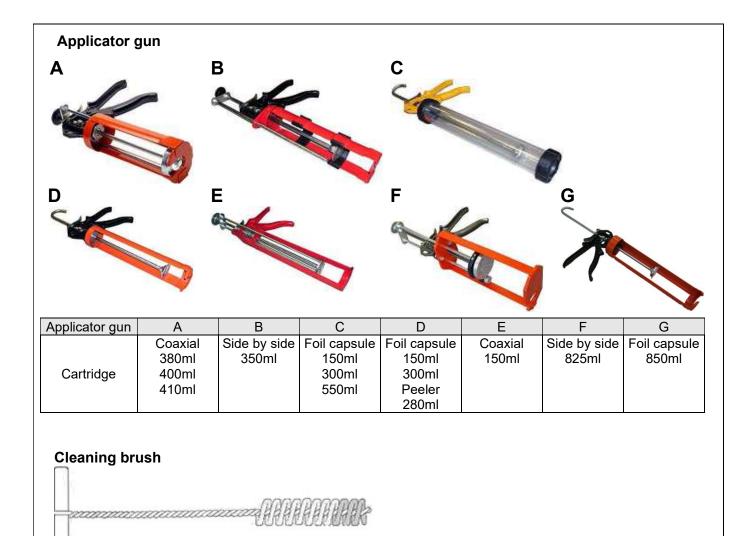
Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:


- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

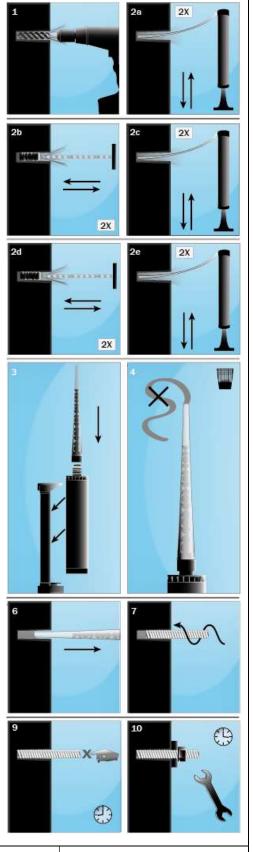
• D3 – downward and horizontal and upwards (e.g. overhead) installation

MO-H, MO-HW, MO-HS

Intended use Specifications

MO-H, MO)-HW.	MO	-HS
----------	-------	----	-----

Intended use Applicator guns Cleaning brush


Installation instructions

- 1. Drill the hole to the correct diameter and depth using a rotary percussion drilling machine.
- 2. Thoroughly clean the hole in the following sequence using the brush with the required extensions and a blow pump:

Blow Clean x2. Brush Clean x2. Blow Clean x2. Brush Clean x2. Blow Clean x2.

Remove standing water from the hole prior to cleaning to achieve maximum performance.

- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/cut foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator (gun).
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and fit the correct resin stopper to the other end.
- 6. Insert the mixer nozzle (or the extension tube with resin stopper when necessary) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- Excess resin will be expelled from the hole evenly around the steel element showing that the hole is full.
 This excess resin should be removed from around the mouth of the hole before it sets.
- Leave the anchor to cure.
 Do not disturb the anchor until the appropriate loading time has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. **Do not overtighten**.

MO-H, MO-HW, MO-HS

Intended use Installation procedure

Table B1: Installation parameters	or anouada	Tea								
Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød₀	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush	d⊳	[mm]	14	14	20	20	29	29	40	40
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200	240	275
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192	216	240
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance	Cmin	[mm]	35	40	50	65	80	96	110	120
Minimum spacing	Smin	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mn	n ≥ 100) mm		h _{ef} +	2d ₀	

 Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	Ød₀	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush	db	[mm]	14	14	19	22	29	40	42
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	200	256
Depth of drill hole for hef,max	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	500	640
Minimum edge distance	C _{min}	[mm]	35	40	50	65	80	100	130
Minimum spacing	S min	[mm]	35	40	50	65	80	100	130
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	⊦ 30 mn	100 ≤ ו	mm		h _{ef} + 2d)

Table B3: Minimum curing time

МО-Н		
Application temperature	Processing time	Load time
+5 to +10°C	10 mins	145 mins
+10 to +15°C	8 mins	85 mins
+15 to +20°C	6 mins	75 mins
+20 to +25°C	5 mins	50 mins
+25 to +30°C	4 mins	40 mins

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range.

Cartridge must be conditioned to a minimum +5°C.

MO-HW

Application temperature	Processing time	Load time					
0 to +5°C	10 mins	75 mins					
+5 to +20°C	5 mins	50 mins					
+20°C	100 second	20 mins					

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range.

Cartridge must be conditioned to a minimum 0°C.

MO-HS						
Application temperature	Processing time	Load time				
+15 to +20°C	15 mins	5 hours				
+20 to +25°C	10 mins	145 mins				
+25 to +30°C	7.5 mins	85 mins				
+30 to +35°C	5 mins	50 mins				
+35 to +40°C	3.5 mins	40 mins				

Processing time refers to the highest temperature in the range. Load time refers to the lowest temperature in the range. Cartridge must be conditioned to a minimum +15°C.

MO-H, MO-HW, MO-HS

Intended use Installation parameters Curing time

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Size				M8	M1	0	/12	M1	6 M	20	M24	M27	M3
Steel grade 4.6	NR	k,s []	<n]< th=""><th>15</th><th>23</th><th>3</th><th>34</th><th>63</th><th>Ş</th><th>98</th><th>141</th><th>184</th><th>224</th></n]<>	15	23	3	34	63	Ş	98	141	184	224
Partial safety factor	γι		[-]		-				2,00	I			1
Steel grade 5.8	NR		<n]< td=""><td>18</td><td>29</td><td>)</td><td>42</td><td>79</td><td>1</td><td>23</td><td>177</td><td>230</td><td>28</td></n]<>	18	29)	42	79	1	23	177	230	28
Partial safety factor			[-]			· .			1,50				
Steel grade 8.8	NR	-	(N]	29	46	3	67	126	_	96	282	367	449
Partial safety factor			[-]	20	1.0		0.		1,50	00	202	001	1
Steel grade 10.9	NR		<n]< td=""><td>37</td><td>58</td><td>2</td><td>84</td><td>157</td><td></td><td>45</td><td>353</td><td>459</td><td>56</td></n]<>	37	58	2	84	157		45	353	459	56
Partial safety factor		_	[-]	01		<u> </u>	01		1,33	10	000	100	00
Stainless steel grade A2-70 , A4-70	NRI	_	<n]< td=""><td>26</td><td>41</td><td>1</td><td>59</td><td>110</td><td><u> </u></td><td>72</td><td>247</td><td>321</td><td>393</td></n]<>	26	41	1	59	110	<u> </u>	72	247	321	393
Partial safety factor			[-]	20	-1		00		1,87	12	271	021	000
Stainless steel grade A4-80	NR	_	<n]< td=""><td>29</td><td>46</td><td></td><td>67</td><td>126</td><td>_</td><td>96</td><td>282</td><td>367</td><td>449</td></n]<>	29	46		67	126	_	96	282	367	449
Partial safety factor		-	[-]	23	40	,	07		, <u>,</u> 1.60	30	202	307	44;
Stainless steel grade 1.4529			< <u>N</u>]	26	41		59	110	<i>,</i>	72	247	321	393
Partial safety factor	NR		_	20	41		59		, <u> </u>	12	247	321	39.
			[-]	00			50		_	70	0.47	004	0.00
Stainless steel grade 1.4565	NR		<n]< td=""><td>26</td><td>41</td><td></td><td>59</td><td>110</td><td></td><td>72</td><td>247</td><td>321</td><td>393</td></n]<>	26	41		59	110		72	247	321	393
Partial safety factor	γι	Ms	[-]						1,87				
Combined pullout and concrete co	ne failure	e in c	oncre	te C	20/25	5				-			
Size					M8	M1	0 M	12	M16	M20) M2	4 M2	7 M
Characteristic bond resistance in u	ncracked	cond	rete f	or a		ing l			year	s and	d 100		
Dry and wet concrete		τ _{Rk,ucr}	[N/m	m ²]	10,0	9,5	5 9	,5	9,0	8,5	8,0) 6,9	5 5
nstallation safety factor		γinst	[-]					1,2	2				1,4
Flooded hole		τ _{Rk,ucr}	[N/m	m ²]	8,5	7,5	5 7	,0	7,0	6,5	5,5	5	\sim
nstallation safety factor		γinst	[-]						1	,4			
actor for uncracked concrete 50/60		Ψc	[-]							1			
Size					M1	0	M	2	M	16	M2	0	M24
Characteristic bond resistance in cr	rackod co	ncro	to for	2 WC		-							
Dry and wet concrete					4,	-	4,			,5	4,	0	4.0
nstallation safety factor		τ _{Rk,cr}		·∩-j 1	4,	5	4,	5		, <u>5</u> ,2	4,	0	4,0
Flooded hole		γinst		m^{21}	4,	5	4,	5		<u>,2</u> ,5	4,	0	4,0
nstallation safety factor		τ _{Rk,cr}		·∩-] 1	4,	5	4,	5		, <u>5</u> ,4	4,	0	4,0
		γinst					- 6 4			,4			
Characteristic bond resistance in cr	аскеа со										-	-	~ -
Dry and wet concrete		τRk,cr	[N/m	m²j	3,	0	3,	0		,0	2,	5	2,5
nstallation safety factor		γinst	[-]							,2			
Flooded hole		τ _{Rk,cr}	[N/m		3,	0	3,	0		,0	2,	5	2,5
nstallation safety factor		γinst	[-]							,4			
Factor for influence of sustained T1: 24°		Ψ^{0}_{sus}	[-]						0,	75			
oad for a working life 50 years T2: 50°	°C / 80°C	Ψ sus	[-]						0,				
	C30/37								1,	12			
Factor for cracked concrete	C40/50	Ψc	[-]						1,:	23			
	C50/60								1,	30			
Concrete cone failure	ooporoto	k u		r					1	1			
-actor for concrete cone tailure for uncrecked		kucr,N	[-]	ŀ					7,				
Factor for concrete cone failure for uncracked		Kcr,N	[mn	<u>_1</u>					 1,5				
Factor for concrete cone failure for cracked c	oncrete	• • •							1,5	llet			
Factor for concrete cone failure for cracked c Edge distance	oncrete	Ccr,N	-										
Factor for concrete cone failure for cracked c	oncrete	Ccr,N	L			•			440	1420		4 M27	7 M3
Factor for concrete cone failure for cracked c Edge distance	oncrete	Ccr,N			M8	M1	0 M	12	W16	IVIZU			
Factor for concrete cone failure for cracked c Edge distance Splitting failure	oncrete	Ccr,N Ccr,sp	[mn	n]	M8	M10	0 M [.]	12	1,5		M24	T 10121	
Factor for concrete cone failure for cracked c Edge distance Splitting failure Size	oncrete			-	M8	M10	0 M [.]	12 1		h _{ef}) N124	+ 14121	
Factor for concrete cone failure for cracked c Edge distance Splitting failure Size Edge distance		C _{cr,sp}	[mn	-	<u>M8</u>	M1(0 M [.]	12 1	1,5	h _{ef}) M24	+ WIZ	
Factor for concrete cone failure for cracked c Edge distance Splitting failure Size Edge distance Spacing		C _{cr,sp}	[mn	-	<u>M8</u>	M1(0 M [·]	12 1	1,5	h _{ef}) M24	+ 10121	
Factor for concrete cone failure for cracked c Edge distance Splitting failure Size Edge distance Spacing O-H, MO-HW, MO-HS		C _{cr,sp}	[mn	-	<u>M8</u>	M10	0 M	12	1,5	h _{ef} h _{ef}			
Factor for concrete cone failure for cracked c Edge distance Splitting failure Size Edge distance Spacing		C _{cr,sp}	[mn	-	M8	M1(0 M [·]	12	1,5	h _{ef} h _{ef}			

Table C2: Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32				
Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years													
Dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5				
Installation safety factor	γinst	[-]				1,2							
Flooded hole	τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5				
Installation safety factor	γinst	[-]				1,4							
Factor for influence of sustained T1: 24°C / 40°C load for a working life 50 years T2: 50°C / 80°C	Ψ^0 sus	[-]				0,75 0,73							
Factor for concrete C50/60	Ψc	[-]				1							

Concrete cone failure		
Factor for concrete cone failure	Kucr,N [-]	11
Edge distance	c _{cr,N} [mm]	1,5h _{ef}

Splitting failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	Ccr,sp	[mm]				1,5he	f		
Spacing	Scr,sp	[mm]				3,0he	f		

MO-H, MO-HW, MO-HS

Performances Design according to EN 1992-4 Characteristic resistance for tension loads - rebar

Steel failure without lever arm			MO	M40	M40	MAC	MOO	MOA	MOZ	Maa
Size	N	FLA 11	M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs	[-]		45	0.1		67	00	445	4.40
Steel grade 5.8	V _{Rk,s}		9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]	45	00	0.4	1	25		101	004
Steel grade 8.8	V _{Rk,s}		15	23	34	63	98	141	184	224
Partial safety factor	γMs		10		10	, ,	25			
Steel grade 10.9	V _{Rk,s}		18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]					,5			
Stainless steel grade A2-70, A4-70	V _{Rk,s}		13	20	30	55	86	124	161	196
Partial safety factor	γMs	[-]				,	56			
Stainless steel grade A4-80	V _{Rk,s}		15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]		1		,	33			1 .
Stainless steel grade 1.4529	V _{Rk,s}		13	20	30	55	86	124	161	196
Partial safety factor	γMs			1 1		,	25		1	
Stainless steel grade 1.4565	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor Characteristic resistance of group of fas	γMs	[-]				1,	56			
Steel failure with lever arm										
) !			140	1440	1440	140				
Size	Mo	[N ma]	M8	M10	M12	M16		M24	M27	
Steel grade 4.6	M ^o Rk,s		M8 15	M10 30	M12 52	133	260	M24 449	M27 666	
Steel grade 4.6 Partial safety factor	γMs	[-]	15	30	52	133 1,0	260 67	449	666	900
Steel grade 4.6 Partial safety factor Steel grade 5.8	γms M ^o Rk,s	[-] [N.m]				133 1,0 166	260 67 325		666	900
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor	γms M ^o Rk,s γms	[-] [N.m] [-]	15 19	30 37	52 66	133 1,0 166 1,2	260 67 325 25	449 561	666 832	900 112
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8	γms M ^o Rk,s γms M ^o Rk,s	[-] [N.m] [-] [N.m]	15	30	52	133 1,0 166 1,2 266	260 67 325 25 519	449	666	900 112
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor	γms M ^o Rk,s γms M ^o Rk,s γms	[-] [N.m] [-] [N.m] [-]	15 19 30	30 37 60	52 66 105	133 1,0 166 1,2 266 1,2	260 67 325 25 519 25	449 561 898	666 832 1332	900 112 179
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9	γms	[-] [N.m] [-] [N.m] [-] [N.m]	15 19	30 37	52 66	133 1,0 166 1,2 266 1,2 333	260 67 325 25 519 25 649	449 561 898	666 832	900 112 179
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor	<u>γ</u> мs <u>M^oRk,s</u> <u>γ</u> Ms <u>M^oRk,s</u> <u>γ</u> Ms γMs γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37	30 37 60 75	52 66 105 131	133 1,0 166 1,2 266 1,2 333 1,5	260 67 325 25 519 25 649 50	449 561 898 1123	666 832 1332 1664	900 112 179 224
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70	γms M ^o Rk,s γms M ^o Rk,s γms M ^o Rk,s γms M ^o Rk,s	[N.m] [-] [N.m] [-] [N.m] [-] [N.m]	15 19 30	30 37 60	52 66 105	133 1,0 166 1,2 266 1,2 333 1,5 233	260 67 325 25 519 25 649 50 454	449 561 898	666 832 1332	900 112 179 224
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor	γΜs M ^o _{Rk,s} γMs M ^o _{Rk,s} γMs M ^o _{Rk,s} γMs M ^o _{Rk,s} γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26	30 37 60 75 52	52 66 105 131 92	133 1,(166 1,; 266 1,; 333 1,; 233 1,;	260 67 325 25 519 25 649 50 454 56	449 561 898 1123 786	666 832 1332 1664 1165	900 112 179 224 1574
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80	YMs M°Rk,s YMs M°Rk,s YMs YMs YMs M°Rk,s YMs YMs YMs YMs YMs YMs YMs M°Rk,s YMs YMs YMs YMs M°Rk,s	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m]	15 19 30 37 26	30 37 60 75	52 66 105 131	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266	260 67 325 25 519 25 649 50 454 56 519	449 561 898 1123 786	666 832 1332 1664	900 112 179 224 1574
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor	YMs M°Rk,s YMs M°Rk,s YMs YMs M°Rk,s YMs M°Rk,s YMs M°Rk,s YMs M°Rk,s YMs M°Rk,s YMs YMs M°Rk,s YMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30	30 37 60 75 52 60	52 66 105 131 92 105	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,;	260 67 325 25 519 25 649 50 454 56 519 33	449 561 898 1123 786 898	 666 832 1332 1664 1165 1332 	900 112 179 224 157 179
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529	γMs M°Rk,s	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m]	15 19 30 37 26	30 37 60 75 52	52 66 105 131 92	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,; 233	260 67 325 25 519 25 649 50 454 56 519 33 454	449 561 898 1123 786	666 832 1332 1664 1165	900 112 179 224 157 179
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor	γMs M°Rk,s γMs YMs M°Rk,s γMs M°Rk,s γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,; 233 1,; 266 1,; 1,; 233 1,; 266 1,; 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 266 1,; 233 1,; 245 1	260 37 325 25 519 25 649 50 454 56 519 33 454 25	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 1165 	900 112 179 224 157 179 157
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565	YMs M°Rk,s YMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m]	15 19 30 37 26 30	30 37 60 75 52 60	52 66 105 131 92 105	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,; 233 1,; 233	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 	900 112 179 224 157 179 157
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor	γMs M°Rk,s γMs YMs M°Rk,s γMs M°Rk,s γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,; 233 1,; 233	260 37 325 25 519 25 649 50 454 56 519 33 454 25	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 1165 	900 112 179 224 157 179 157
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor	γмs M°Rk,s γMs M°Rk,s γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,1 166 1,2 266 1,2 333 1,2 2 33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454 56 519 33	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 1165 	900 112 179 224 157 179
Steel grade 4.6Partial safety factorSteel grade 5.8Partial safety factorSteel grade 8.8Partial safety factorSteel grade 10.9Partial safety factorStainless steel grade A2-70, A4-70Partial safety factorStainless steel grade A4-80Partial safety factorStainless steel grade 1.4529Partial safety factorStainless steel grade 1.4565Partial safety factorPartial safety factorStainless steel grade 1.4565Partial safety factorStainless steel grade	YMs M°Rk,s YMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,(166 1,; 266 1,; 333 1,; 233 1,; 266 1,; 233 1,; 233 1,; 233	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454 56 519 33	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 1165 	900 112 179 224 157 179 157
Steel grade 4.6 Partial safety factor Steel grade 5.8 Partial safety factor Steel grade 8.8 Partial safety factor Steel grade 10.9 Partial safety factor Stainless steel grade A2-70, A4-70 Partial safety factor Stainless steel grade A4-80 Partial safety factor Stainless steel grade 1.4529 Partial safety factor Stainless steel grade 1.4565 Partial safety factor	γмs M°Rk,s γMs M°Rk,s γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,(166 1,; 266 1,; 233 1,; 266 1,; 233 1,; 233 1,; 233 1,; 233	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454 56 519 33	 449 561 898 1123 786 898 786 	 666 832 1332 1664 1165 1332 1165 	900 112 179 224 157 157 157
Steel grade 4.6Partial safety factorSteel grade 5.8Partial safety factorSteel grade 8.8Partial safety factorSteel grade 10.9Partial safety factorStainless steel grade A2-70, A4-70Partial safety factorStainless steel grade A4-80Partial safety factorStainless steel grade 1.4529Partial safety factorStainless steel grade 1.4565Partial safety factorPartial safety factorStainless steel grade 1.4565Partial safety factorStainless steel grade	γмs M°Rk,s γMs M°Rk,s γMs	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26	30 37 60 75 52 60 52	52 66 105 131 92 105 92	133 1,1 166 1,2 266 1,2 333 1,2 235 1,2 235 1,2 235 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454 56 519 33	 449 561 898 1123 786 898 786 	666 832 1332 1664 1165 1332 1165 1165	2249 1574 1799
Steel grade 4.6Partial safety factorSteel grade 5.8Partial safety factorSteel grade 8.8Partial safety factorSteel grade 10.9Partial safety factorStainless steel grade A2-70, A4-70Partial safety factorStainless steel grade A4-80Partial safety factorStainless steel grade 1.4529Partial safety factorStainless steel grade 1.4565Partial safety factorConcrete pry-out failureFactor for resistance to pry-out failureConcrete edge failure	YMs M°Rk,s YMs K8	[-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-] [N.m] [-]	15 19 30 37 26 30 26 26	30 37 60 75 52 60 52 52	52 66 105 131 92 105 92 92	133 1,(166 1,; 266 1,; 233 1,; 266 1,; 233 1,; 233 1,; 233 1,; 233	260 67 325 25 519 25 649 50 454 56 519 33 454 25 454 56 2	449 561 898 1123 786 898 786 786	666 832 1332 1664 1165 1332 1165 1165	900 112 179 224 157 157 157

MO-H, MO-HW, MO-HS

Table C3:Design method EN 1992-4

Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod Annex C 3

Table C4: Design method EN 1992-4Characteristic values of resistance to shear load of rebar

Steel failure without lever arm								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s} [kN]	14	22	31	55	86	135	221
Partial safety factor	γms [-]				1,5			
Characteristic resistance of group of faste	eners							
Ductility factor $k_7 = 1,0$ for steel with ruptur	e elongation $A_5 > 8$	3%						

Steel failure with lever arm								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	M ^o Rk,s [N.r	n] 33	65	112	265	518	1013	2122
Partial safety factor	γMs [-]				1,5			
Concrete pry-out failure								
Factor for resistance to pry-out failure	k ₈ [-]				2			

Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	25	32
Effective length of fastener	lf	[mm]			min	(h _{ef} , 8 c	I _{nom})		

MO-H, MO-HW, MO-HS

Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar

Annex C 4

Page 16 of 18 ETA 14/0138 issued on 22/09/2021 and replacing ETA 14/0138 issued on 20/05/2018

 Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	on load								
Uncra	cked conc	rete							
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,02	0,02	0,02	0,01	0,01
δ _{N∞}	[mm/kN]	0,11	0,09	0,06	0,04	0,03	0,02	0,02	0,02
Crack	ed concre	te							
δ _{N0}	[mm/kN]		0,08	0,09	0,05	0,03	0,02		
δ _{N∞}	[mm/kN]		0,51	0,32	0,18	0,13	0,11		
Shear	load								
δ _{V0}	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
δv∞	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensi	on load							
Uncra	cked conc	rete						
δ _{N0}	[mm/kN]	0,04	0,03	0,02	0,02	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,03	0,02	0,01	0,01
Shear	load							
δ _{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
δv∞	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

MO-H, MO-HW, MO-HS

Performances Displacement Annex C 5

Size			M10	M12	M16	M20	M24
Tension load							
Steel failure							
Characteristic resistance grade 4.6	N _{Rk,s,eq}	[kN]	23	34	63	98	141
Partial safety factor	γMs	[-]			2,00		
Characteristic resistance grade 5.8	N _{Rk,s,eq}	[kN]	29	42	79	123	177
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance grade 8.8	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance grade 10.9	N _{Rk,s,eq}	[kN]	58	84	157	245	353
Partial safety factor	γMs	[-]			1,33		
Characteristic resistance A2-70, A4-70	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,87	1	1
Characteristic resistance A4-80	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	γMs	[-]			1,60		
Characteristic resistance 1.4529	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,50		
Characteristic resistance 1.4565	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	γMs	[-]			1,87	I	
Characteristic resistance to pull-out for a w		e of 50 v	ears		,		
Dry, wet concrete and flooded hole		[N/mm ²]	3,5	3,5	3,5	3,5	3,5
Characteristic resistance to pull-out for a w			-	- , -	-,-	- , -	- , -
Dry, wet concrete and flooded hole		[N/mm ²]	3,2	3,2	3,2	2,2	2,2
nstallation safety factor – Dry and wet concrete	γinst	[-]	,	,	1,2	,	, , , , , , , , , , , , , , , , , , ,
nstallation safety factor – Flooded hole	γinst	[-]			1,4		
					,		
Shear load							
Steel failure without lever arm							1
Characteristic resistance grade 4.6	V _{Rk,s,eq}	[kN]	7	10	23	30	40
Partial safety factor	γMs	[-]			1,67		
Characteristic resistance grade 5.8	V _{Rk,s,eq}	[kN]	9	13	28	38	51
Partial safety factor	γMs	[-]			1,25	1	
Characteristic resistance grade 8.8	V _{Rk,s,eq}	[kN]	14	21	45	61	81
Partial safety factor	γMs	[-]			1,25	1	
Characteristic resistance grade 10.9	$V_{Rk,s,eq}$	[kN]	18	26	56	76	101
Partial safety factor	γMs	[-]		1	1,50		1
Characteristic resistance A2-70 , A4-70	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	γMs	[-]			1,56	1	
Characteristic resistance A4-80	V _{Rk,s,eq}	[kN]	14	21	45	61	81
Partial safety factor	γMs	[-]			1,33		
Characteristic resistance 1.4529	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	γMs	[-]			1,25		
Characteristic resistance 1.4565	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	γMs	[-]			1,56		
Factor for annular gap	$lpha_{gap}$	[-]			0,5		

 Table C7: Characteristic values of resistance under seismic action category C1 for threaded rods

Note: Rebars are not qualified for seismic design

MO-H, MO-HW, MO-HS

Performances

Reduction factors for seismic design