

INSTYTUT TECHNIKI BUDOWLANEJ PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 579-62-94 eta@itb.pl www.itb.pl

Member of

European Technical Assessment

ETA-21/0823 of 01/02/2022

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

AISC, AISS, AISX, AISDC, AISDS, AISDX

Nailed-in plastic anchors for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Index - Técnicas Expansivas S.L. c/ Segador 13 26006 Logroño (La Rioja) Spain

Manufacturing plant no. 13

26 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document EAD 330196-01-0604 "Plastic anchors made of virgin or non-virgin material for fixing of external thermal insulation composite systems with rendering"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The AISC and AISDC nailed-in plastic anchors consist of a plastic expansion sleeve with a plate made of polypropylene (virgin material) and an accompanying nail as an expansion pin made of polyamide PA6 reinforced with glass fibers GF30 (virgin material).

The AISS, AISX, AISDS and AISDX nailed-in plastic anchors consist of a plastic expansion sleeve with a plate made of polypropylene (virgin material) and an accompanying nail as an expansion pin made of carbon steel with zinc coating.

The plastic anchor sleeve is expanded by hammering in a nail, which press the sleeve against the wall of the drilled hole.

The AISC, AISS, AISX, AISDC, AISDS and AISDX anchors may in addition be combined with the additional plate type AISR, made of polypropylene, polyamide PA6 or polyamide PA6 reinforced with glass fibers (virgin materials).

The drawings and the description of the products are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in clause 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	Annex C1
Edge distances and spacing	Annex B2
Plate stiffness	Annex C2
Displacements	Annex C3

3.1.2 Energy economy and heat retention (BWR 6)

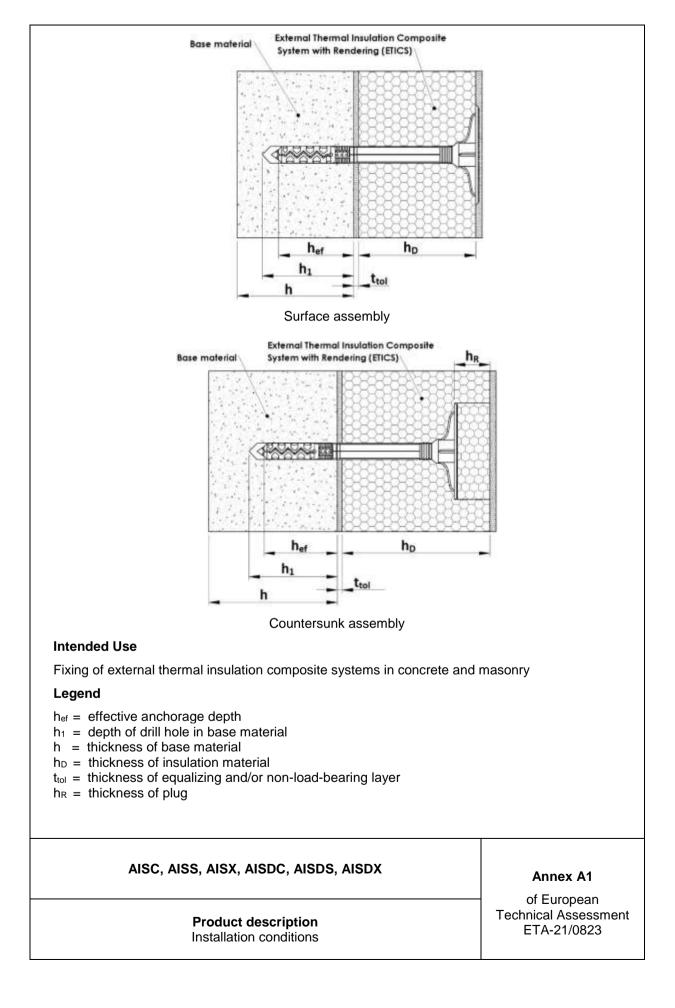
Essential characteristic	Performance
Point thermal transmittance of an anchor	No performance assessed

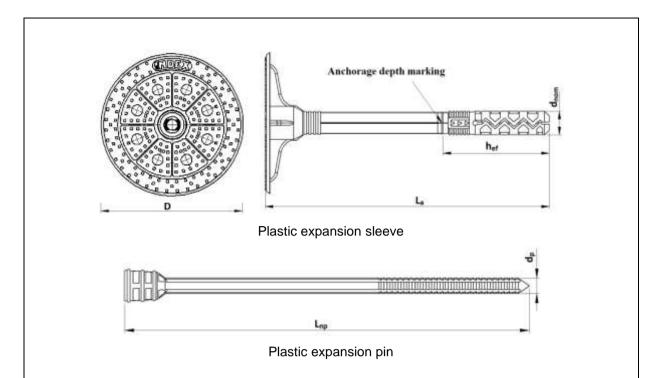
3.2 Methods used for the assessment

The assessment has been made in accordance with EAD 330196-01-0604.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to the Decision 97/463/EC of the European Commission the system 2+ of assessment and verification of constancy of performance (see Annex V to the regulation (EU) No 305/2011) applies.


5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)

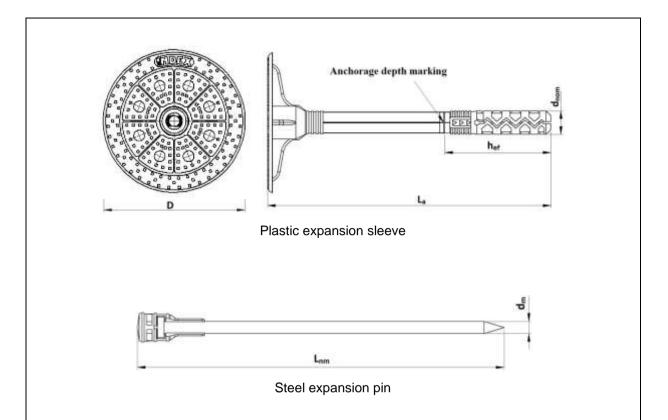

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For the type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 01/02/2022 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Table A1: AISC anchor types and dimensions [mm]

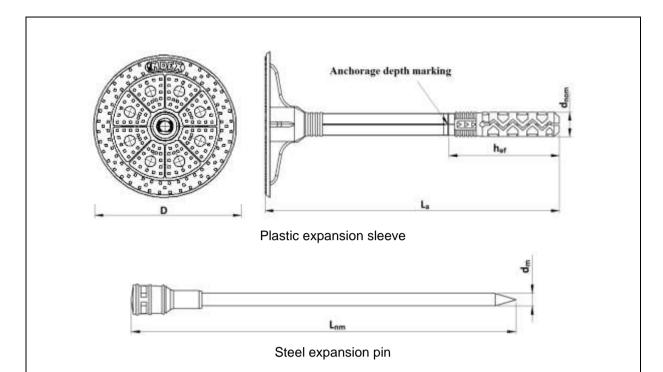

Ancherture		Anchor sleeve				sion pin
Anchor type	d nom ± 0,1	L a ± 2	D +3/-1	h _{ef}	d _p ± 0,1	L _{np} ±2
AISC10070	10	70	60	50	5,7	75
AISC10090	10	90	60	50	5,7	95
AISC10100	10	100	60	50	5,7	105
AISC10120	10	120	60	50	5,7	125
AISC10140	10	140	60	50	5,7	145
AISC10160	10	160	60	50	5,7	165
AISC10180	10	180	60	50	5,7	185
AISC10200	10	200	60	50	5,7	205
AISC10220	10	220	60	50	5,7	225
AISC10260	10	260	60	50	5,7	265
AISC10300	10	300	60	50	5,7	305
AISC10350	10	350	60	50	5,7	355
AISC10400	10	400	60	50	5,7	405

Determination of maximum thickness of insulation material: For surface assembly: $h_D = L_a - t_{tol} - h_{ef}$

For countersunk assembly: $h_D = L_a - t_{tol} - h_{ef} + h_R$

AISC, AISS, AISX, AISDC, AISDS, AISDX

Product description Dimensions of the AISC anchor elements Annex A2

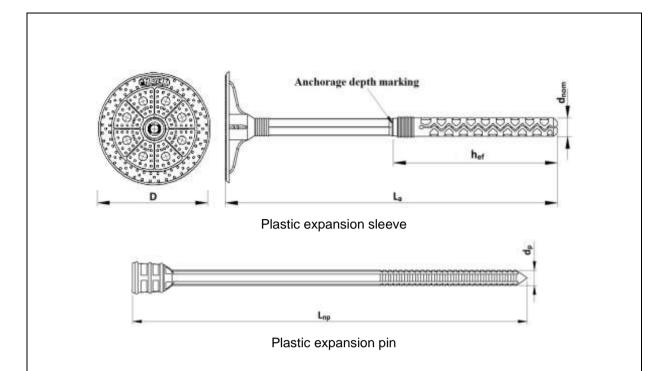

Table A2: AISS anchor types and dimensions [mm]

Anchertune		Anchor	Expansion pin			
Anchor type	d _{nom} ± 0,1	L a ± 2	D +3/-1	h _{ef}	d _m ± 0,1	Lnm ± 2
AISS10070	10	70	60	50	5,5	75
AISS10090	10	90	60	50	5,5	95
AISS10100	10	100	60	50	5,5	105
AISS10120	10	120	60	50	5,5	125
AISS10140	10	140	60	50	5,5	145
AISS10160	10	160	60	50	5,5	165
AISS10180	10	180	60	50	5,5	185
AISS10200	10	200	60	50	5,5	205
AISS10220	10	220	60	50	5,5	225
AISS10260	10	260	60	50	5,5	265
AISS10300	10	300	60	50	5,0	305
AISS10350	10	350	60	50	5,0	355
AISS10400	10	400	60	50	5,0	405

Determination of maximum thickness of insulation material: For surface assembly: $h_D = L_a - t_{tol} - h_{ef}$ For countersunk assembly: $h_D = L_a - t_{tol} - h_{ef} + h_R$

AISC, AISS, AISX, AISDC, AISDS, AISDX

Product description Dimensions of the AISS anchor elements Annex A2

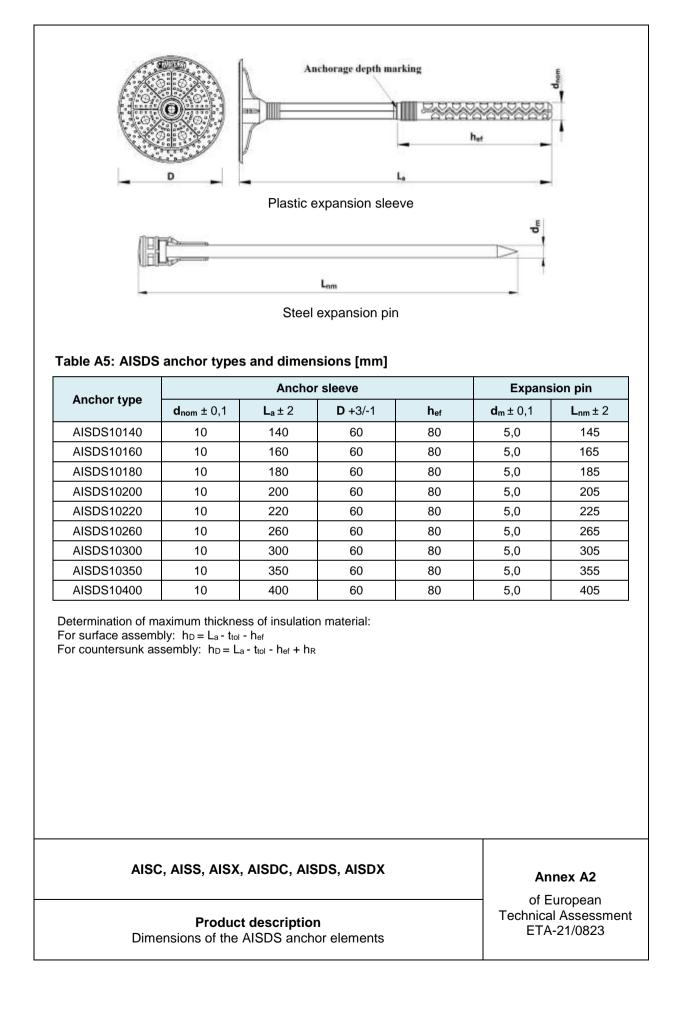

Table A3: AISX anchor types and dimensions [mm]	Table A3: AIS	SX anchor type	s and dime	nsions [mm]
---	---------------	----------------	------------	-------------

Anchorthma		Anchor	Expans	sion pin		
Anchor type	d _{nom} ± 0,1	L _a ± 2	D +3/-1	h _{ef}	d _m ± 0,1	L _{nm} ±2
AISX10070	10	70	60	50	5,5	75
AISX10090	10	90	60	50	5,5	95
AISX10100	10	100	60	50	5,5	105
AISX10120	10	120	60	50	5,5	125
AISX10140	10	140	60	50	5,5	145
AISX10160	10	160	60	50	5,5	165
AISX10180	10	180	60	50	5,5	185
AISX10200	10	200	60	50	5,5	205
AISX10220	10	220	60	50	5,5	225
AISX10260	10	260	60	50	5,5	265
AISX10300	10	300	60	50	5,0	305
AISX10350	10	350	60	50	5,0	355
AISX10400	10	400	60	50	5,0	405

Determination of maximum thickness of insulation material: For surface assembly: $h_D = L_a - t_{tol} - h_{ef}$ For countersunk assembly: $h_D = L_a - t_{tol} - h_{ef} + h_R$

AISC, AISS, AISX, AISDC, AISDS, AISDX

Product description Dimensions of the AISX anchor elements Annex A2

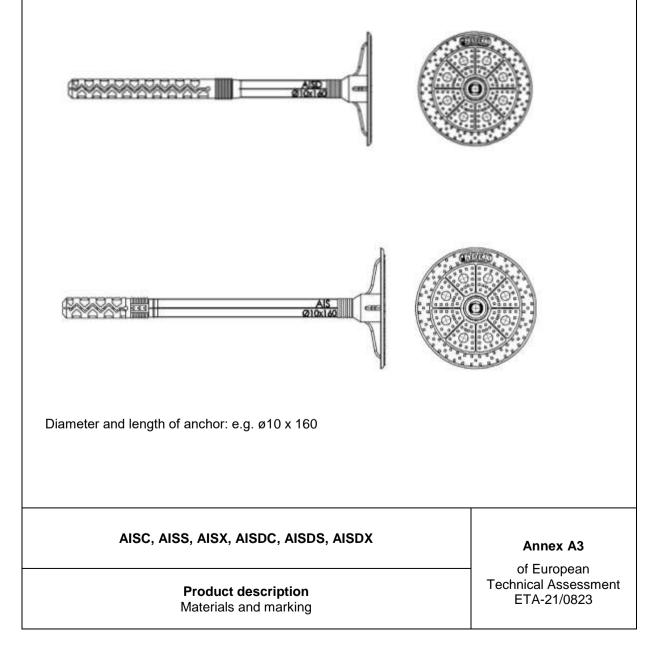

Table A4: AISDC anchor types and dimensions [mm]

Anchor type		Anchor	Expansion pin			
Anchor type	d _{nom} ± 0,1	L a ± 2	D +3/-1	h _{ef}	d _p ± 0,1	L _{np} ±2
AISDC10140	10	140	60	80	5,7	145
AISDC10160	10	160	60	80	5,7	165
AISDC10180	10	180	60	80	5,7	185
AISDC10200	10	200	60	80	5,7	205
AISDC10220	10	220	60	80	5,7	225
AISDC10260	10	260	60	80	5,7	265
AISDC10300	10	300	60	80	5,7	305
AISDC10350	10	350	60	80	5,7	355
AISDC10400	10	400	60	80	5,7	405

Determination of maximum thickness of insulation material: For surface assembly: $h_D = L_a - t_{tol} - h_{ef}$ For countersunk assembly: $h_D = L_a - t_{tol} - h_{ef} + h_R$

AISC, AISS, AISX, AISDC, AISDS, AISDX

Product description Dimensions of the AISDC anchor elements Annex A2



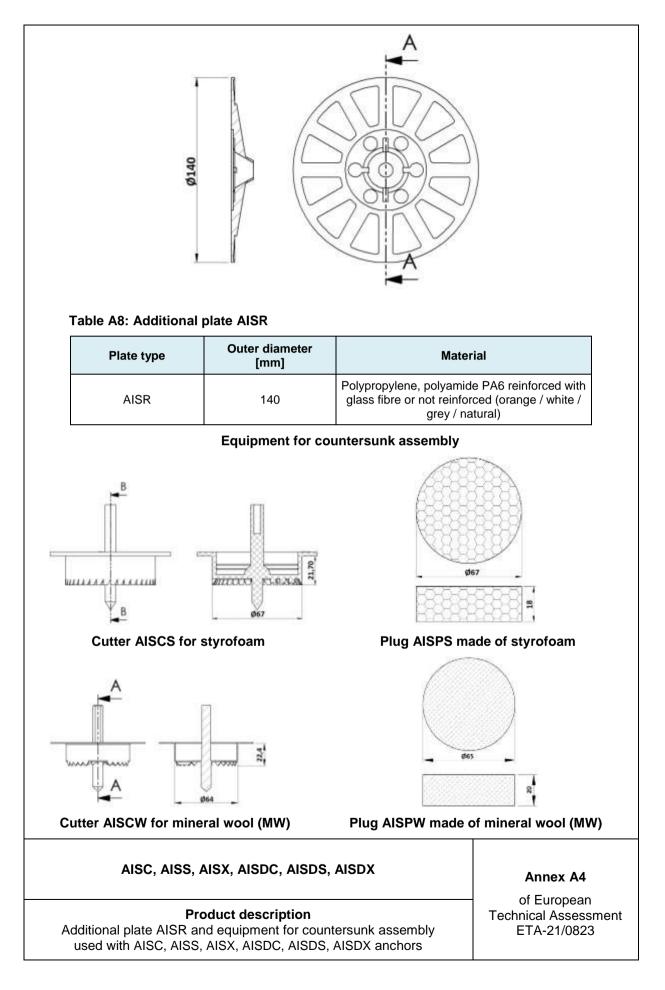


Table A7: Materials

Designation		Material	
Plastic expansion anchor sleeve		Polypropylene (orange / grey / white), virgin material	
Plastic expansion pin Ø 5,7 mm		Polyamide PA6 (natural / grey / orange / black) reinforced with glas fibre GF30, virgin material	
Stool ovponsion pin	Ø 5 mm	Carbon steel ($f_{y,k} \ge 490$ MPa, $f_{u,k} \ge 650$ MPa) with zinc coating $\ge 5 \ \mu m$; galvanized according to EN ISO 4042	
Steel expansion pin Ø 5,5 mm		Carbon steel ($f_{y,k} \ge 450$ MPa, $f_{u,k} \ge 600$ MPa) with zinc coating $\ge 5 \ \mu m$; galvanized according to EN ISO 4042	

Marking:

Specification of intended use

Anchorages subject to:

Wind suction loads.

Note: The anchor shall not be used for the transmission of dead loads of the external thermal insulation composite system.

Base materials:

- Reinforced or unreinforced normal weight concrete (use category A), according to Annex C1 and C3.
- Solid masonry (use category B), according to Annex C1 and C3.
- Hollow or perforated masonry (use category C), according to Annex C1 and C3.
- Lightweight aggregate concrete (use category D), according to Annex C1 and C3.
- Autoclaved aerated concrete (use category E), according to Annex C1 and C3.
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 051, edition December 2016.

Application temperature range:

0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).

Design:

- The anchorages are designed under the responsibility of an engineer experienced in anchorages and masonry work with the partial safety factors $\gamma_M = 2,0$ and $\gamma_F = 1,5$, if there are no other national regulations.
- Verifiable calculation notes and drawings with anchor positions are prepared taking into account of the loads to be anchored.
- Anchors are only to be used for multiple fixings of thermal insulation composite system (ETICS), according to EAD 330196-01-0604.

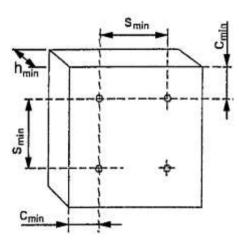
Installation:

- Hole shall be drilled by the drill modes according to Annex C1.
- Anchor installation shall be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation shall be executed in temperature from 0°C to +40°C.
- Exposure to UV due to solar radiation of the anchor not protected by rendering shall not exceed 6 weeks.

AISC, AISS, AISX, AISDC, AISDS, AISDX

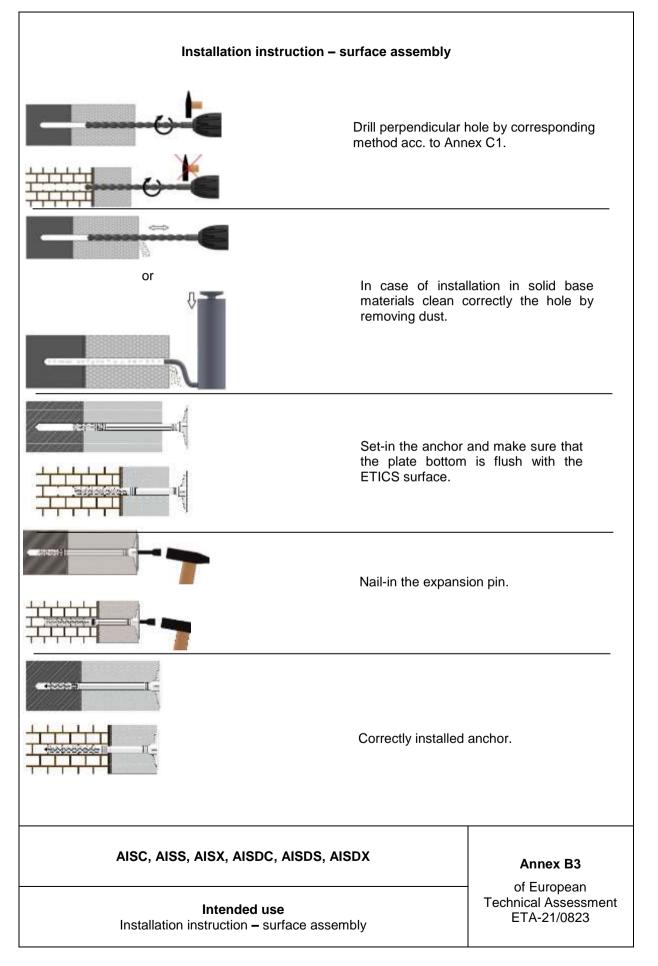
Annex B1

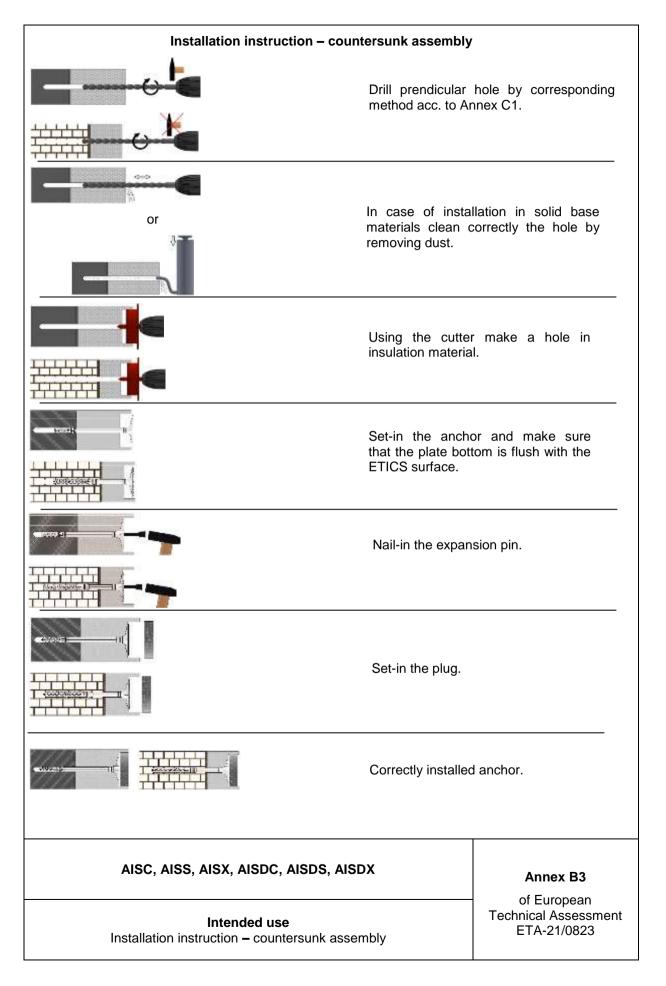
Intended use Specifications


Table B1: Installation characteristics	Table B1: Installation	characteristics
--	------------------------	-----------------

Anchor type		AISC, AISS, AISX	AISDC, AISDS, AISDX
Nominal diameter	d _{nom} [mm]	10	10
Nominal diameter of drill bit	d₀ [mm]	10	10
Cutting diameter of drill bit	d _{cut} [mm]	≤ 10,45	≤ 10,45
Depth of drill hole for base material category A, B, C, D, E	h₁ [mm]	≥ 60	≥ 90
Effective anchorage depth for base material category A, B, C, D, E	h _{ef} [mm]	≥ 50	≥ 80

Table B2: Minimum thickness of base material, anchor spacing and edge distance


Anchor type		AISC, AISS, AISX, AISDC, AISDS, AISDX
Minimum thickness of base material	h _{min} [mm]	100
Minimum spacing	s _{min} [mm]	100
Minimum edge distance	C _{min} [mm]	100


Diagram of spacing

AISC, AISS, AISX, AISDC, AISDS, AISDX

Intended use Installation characteristics, minimum thickness of base material, edge distance and spacing Annex B2

Table C1: Characteristic resistance to tension loads N_{Rk} in concrete and in masonry for single AISC anchor

Base material	Bulk density [kg/dm ³]	Compressive strength [N/mm ²]	Referring standard	N _{Rk} [kN]	Drill method	
Concrete C12/15 (use category A)			EN 206	0,55	hammer	
Concrete C16/20 to C50/60 (use category A)			EN 206	0,80	hammer	
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	EN 771-1	1,00	hammer	
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	EN 771-2	0,40	hammer	
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	EN 771-1	0,10	rotary	
Calcium silicate hollow blocks KSL (use category C)	≥ 1,6	≥ 15,0	EN 771-2	0,65	rotary	
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	EN 771-3	0,20	rotary	
Partial safety factor for anchor resistance, γ_M ⁽²⁾			2,0			
⁽¹⁾ minimum values "a", for elements with lower ⁽²⁾ in the absence of other national regulations	value of "a" th	e load tests on t	he constructic	n site are req	uired	
AISC, AISS, AISX, AISD	C, AISDS, A	ISDX			nex C1	
Performan Characteristic re				of European Technical Assessme ETA-21/0823		

Base material	Bulk density [kg/dm³]	Compressive strength [N/mm²]	Referring standard	N _{Rk} [kN]	Drill method
Concrete C12/15 (use category A)			EN 206	0,40	hammer
Concrete C16/20 to C50/60 (use category A)			EN 206	0,55	hammer
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	EN 771-1	0,65	hammer
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	EN 771-2	0,35	hammer
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	EN 771-1	0,10	rotary
Calcium silicate hollow blocks KSL					
(use category C)	≥ 1,6	≥ 15,0	EN 771-2	0,40	rotary
Lightweight concrete blocks LAC (use category D)					
	≥ 0,88	≥ 5,0	EN 771-3	0,30	rotary
Autoclaved concrete blocks AAC 2 (use category E)	≥ 0,35	≥ 2,0	EN 771-4	0,10	rotary
Partial safety factor for anchor resistance, $\gamma_M^{(2)}$			2,0		
 ⁽¹⁾ minimum values "a", for elements with lowe ⁽²⁾ in the absence of other national regulations 		e load tests on t	he constructio	on site are req	uired
AISC, AISS, AISX, AISE	DC, AISDS. A				
Performar				of Eu Technical	tex C1 uropean Assessm 21/0823

Table C2: Characteristic resistance to tension loads N_{Rk} in concrete and in masonry

Characteristic resistance

Table C3: Characteristic resistance to tension loads $N_{\mbox{\scriptsize Rk}}$ in concrete and in masonry for single AISDC anchor

Base material	Bulk density [kg/dm³]	Compressive strength [N/mm ²]	Referring standard	N _{Rk} [kN]	Drill method
Concrete C12/15 (use category A)			EN 206	0,30	hammer
Concrete C16/20 to C50/60 (use category A)			EN 206	0,45	hammer
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	EN 771-1	0,45	hammer
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	EN 771-2	0,25	hammer
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	EN 771-1	0,15	rotary
Calcium silicate hollow blocks KSL (use category C) a a a a a a a a a a	≥ 1,6	≥ 15,0	EN 771-2	0,15	rotary
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	EN 771-3	0,15	rotary
Autoclaved concrete blocks AAC 2	≥ 0,35	≥ 2,0	EN 771-4	0,10	rotary
(use category E) Partial safety factor for anchor				, -	
resistance, $\gamma_{M}^{(2)}$ ⁽¹⁾ minimum values "a", for elements with lower ⁽²⁾ in the absence of other national regulations	value of "a" th	e load tests on t	2,0 he constructi	on site are req	uired
AISC, AISS, AISX, AISD Performanc Characteristic re	ces	NSDX		of Eu Technical	lex C1 Iropean Assessm 21/0823

Table C4: Characteristic resistance to tension loads N_{Rk} in concrete and in masonry for single AISDS and AISDX anchors

Base material	Bulk density [kg/dm ³]	Compressive strength [N/mm²]	Referring standard	N _{Rk} [kN]	Drill method
Concrete C12/15 (use category A)			EN 206	0,55	hammer
Concrete C16/20 to C50/60 (use category	' A)		EN 206	0,80	hammer
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	EN 771-1	0,60	hammer
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	EN 771-2	0,65	hammer
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	EN 771-1	0,25	rotary
Calcium silicate hollow blocks KSL (use category C)	≥ 1,6	≥ 15,0	EN 771-2	0,25	rotary
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	EN 771-3	0,30	rotary
Autoclaved concrete blocks AAC 2 (use category E)	≥ 0,35	≥ 2,0	EN 771-4	0,10	rotary
Partial safety factor for anchor resistance, $\gamma_{M}^{(2)}$			2,0		
⁽¹⁾ minimum values "a", for elements with I ⁽²⁾ in the absence of other national regulat	ower value of "	a" the load tests	on the construct	tion site are req	uired
AISC, AISS, AISX, AI		S, AISDX			nex C1 uropean
Perforn Characteristi					·21/0823

Anchor type	Diameter of the anchor plate d _{plate} [mm]	Characteristic load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
AISC, AISS, AISX, AISDC, AISDS, AISDX	60	0,84	0,20
AISC, AISS, AI	SX, AISDC, AISDS, A	NSDX	Annex C2
	erformances Plate stiffness		of European Technical Assessm ETA-21/0823

Base material	Bulk density [kg/dm ³]	Compressive strength [N/mm²]	$\frac{N_{Rk}}{3}$ [kN]	$\delta\left(\frac{N_{Rk}}{3}\right)$ [mm]
Concrete C12/15 (use category A)			0,18	0,40
Concrete C16/20 to C50/60 (use category A	۹)		0,27	0,70
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	0,33	1,00
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	0,13	0,42
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	0,03	0,09
Calcium silicate hollow blocks KSL (use category C) a a (a) (a) (a) (a) (a) (a) (a) (a) (a	≥ 1,6	≥ 12,0	0,22	0,88
Lightweight concrete blocks LAC (use category D)	≥ 0,88 lower value of	≥ 5,0 "a" the load tes	0,06 ts on the cons	0,13 truction site are

Base material	Bulk density [kg/dm³]	Compressive strength [N/mm²]	<u>N_{Rk}</u> [kN] 3	$\delta\left(\frac{N_{Rk}}{3}\right)$ [mm]
Concrete C12/15 (use category A)			0,13	0,40
Concrete C16/20 to C50/60 (use category	A)		0,18	0,70
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	0,22	0,90
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	0,12	0,57
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	0,03	0,13
Calcium silicate hollow blocks KSL (use category C)	≥ 1,6	≥ 12,0	0,13	0,70
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	0,10	0,45
Autoclaved concrete blocks AAC 2 (use category E)	≥ 0,35	≥ 2,0	0,03	0,08
⁽¹⁾ minimum values "a", for elements with required	i iowei value of	a une ioad (es		ISTRUCTION SILE ARE
AISC, AISS, AISX, AISDC	C, AISDS, AIS	DX		Annex C3
Performano Displaceme			Te	of Europea echnical Asses ETA-21/082

Base material	Bulk density [kg/dm³]	Compressive strength [N/mm ²]	<u>N_{Rk}</u> [kN] 3	$\delta\left(\frac{N_{Rk}}{3}\right) [mm]$
Concrete C12/15 (use category A)			0,10	0,32
Concrete C16/20 to C50/60 (use category A)		0,15	0,34
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	0,15	0,36
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	0,08	0,10
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	0,05	0,06
Calcium silicate hollow blocks KSL (use category C) a a a (1) = 40 mm	≥ 1,6	≥ 12,0	0,05	0,08
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	0,05	0,07
Autoclaved concrete blocks AAC 2 (use category E)	≥ 0,35	≥ 2,0	0,03	0,05
⁽¹⁾ minimum values "a", for elements with required	lower value of	"a" the load tes	ts on the co	nstruction site are
AISC, AISS, AISX, AISDC,	AISDS, AISI	ох		Annex C3
Performance Displacemen			Т	of Europea echnical Asses ETA-21/082

Base material	Bulk density [kg/dm³]	Compressive strength [N/mm²]	<u>N_{Rk}</u> [kN] 3	$\delta\left(\frac{N_{Rk}}{3}\right)$ [mm]
Concrete C12/15 (use category A)	l		0,18	0,47
Concrete C16/20 to C50/60 (use category	A)		0,27	0,70
Clay bricks MZ (use category B)	≥ 2,0	≥ 20,0	0,20	0,77
Calcium silicate bricks KS (use category B)	≥ 2,0	≥ 20,0	0,22	0,70
Vertically perforated clay bricks Porotherm 25 P+D (use category C)	≥ 0,8	≥ 15,0	0,08	0,14
Calcium silicate hollow blocks KSL (use category C) a a a a (1) = 40 mm	≥ 1,6	≥ 12,0	0,08	0,25
Lightweight concrete blocks LAC (use category D)	≥ 0,88	≥ 5,0	0,10	0,31
Autoclaved concrete blocks AAC 2 (use category E)	≥ 0,35	≥ 2,0	0,03	0,04
⁽¹⁾ minimum values "a", for elements with required	h lower value o	t "a" the load tes	ts on the co	nstruction site are
AISC, AISS, AISX, AISDO	C, AISDS, AIS	SDX		Annex C
Performano Displaceme			Т	of Europea echnical Asses ETA-21/08