

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

Tel.: (34) 91 302 04 40

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Fax: (34) 91 302 07 00

Designated according to

Article29 of Regulation (EU) Nº 305/2011

European Technical Assessment

ETA 14/0068 of 19/10/2021

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product:

Product family to which the construction product belongs:

Manufacturer:

Manufacturing plant:

Assessment contains:

This European Technical

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of:

This version replaces:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

HEHO, HECLO, HEHC, HEA4, HEC4 drop in anchor

Deformation controlled anchor made of galvanized steel or stainless steel of sizes M6, M8, M10, M12, M16 and M20 for use in concrete for redundant non-structural systems

Index - Técnicas Expansivas S.L.

Segador 13.

26006 Logroño (La Rioja) Spain. website: www.indexfix.com

Index plant 2

15 pages including 3 annexes which form an integral part of this assessment.

European Assessment Document EAD 330747-00-0601, "Fasteners for use in concrete for redundant non-structural systems", ed. May 2018.

ETA 14/0068 issued on 04/03/2021

Page 2 of European Technical Assessment ETA 14/0068 of 19/10/2021

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Index HEHO, HECLO, HEHC, in the range of M6 to M20, is an anchor made of galvanised steel. The Index HEA4, HEC4, in the range of M6 to M20, is an anchor made of stainless steel. They are placed into a drilled hole and anchored by deformation-controlled expansion. The anchorage is characterised by friction between the sleeve and concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
	Anchorages satisfy requirements for class A1 according to EN 13501-1
Resistance to fire	See annex C7

3.2 Safety in use (BWR 4)

Essential characteristic					Performance		
Essential	characteristics	under	static	or	quasi	static	See annexes C3 to C6
loading							

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 97/161/EC.

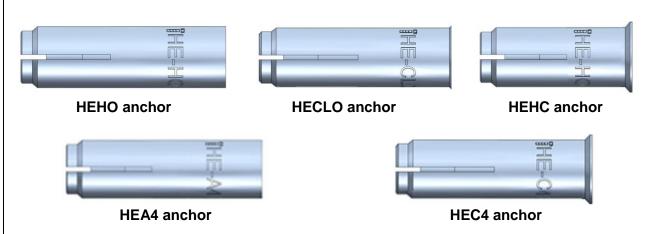
The system to be applied is 2+.

English translation prepared by IETcc

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS



C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 19th of October 2021 NVESTIGA

Director IETcc-CSIC

Product

Identification on sleeve: Index logo + "HEHO (HECLO, HEHC, HEA4, HEC4)" + Metric; e.g: ■HEHO M6

Table A1: Dimensions

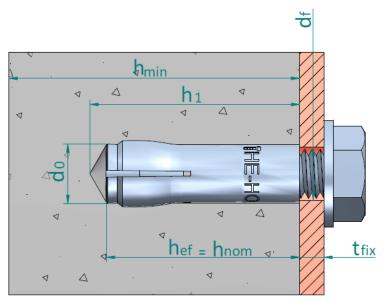

Anchor dimensions		М6	M8	M10	M12	M12D	M16	M20
HEHO, HECLO								
ØD: External diameter	[mm]	8	10	12	15	16	20	25
Ød: internal diameter	[mm]	M6	M8	M10	M12	M12	M16	M20
L: total length	[mm]	25	30	40	50	50	65	80
HEHC	HEHC							
ØD: External diameter	[mm]		10	12	15			
Ød: internal diameter	[mm]		M8	M10	M12			
L: total length	[mm]	-	25	25	25			
HEA4, HEC4								
ØD: External diameter	[mm]	8	10	12	15		20	25
Ød: internal diameter	[mm]	M6	M8	M10	M12		M16	M20
L: total length	[mm]	25	30	40	50		65	80

Table A2: Materials

Item	Designation	Material for HEHO, HECLO, HEHC	Material for HEA4, HEC4
1	Sleeve	Carbon steel, zinc plated ≥ 5 µm ISO 4042 Zn5/An/T0	Stainless steel, grade A4
2	Cone	Carbon steel, zinc plated ≥ 5 µm ISO 4042 Zn5/An/T0	Stainless steel, grade A4
3	Retention disc	Plastic	Plastic

HEHO, HECLO, HEHC, HEA4, HEC4 anchor	
Product description	Annex A1
Product and materials	

Installed condition in concrete

hef: Effective anchorage depth

h₁: Depth of drilled hole

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Thickness of fixture

d₀: Nominal diameter of drill bitd_f: Fixture clearance hole diameter

Setting tool

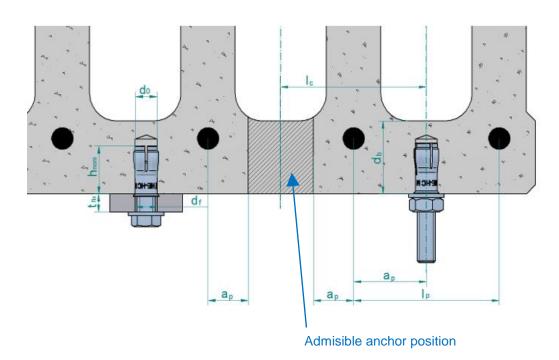

Setting tool can be assembled with a plastic handle for hand protection purposes

Table A3: Setting tool dimensions

Setting tool dimension	ons	M6	M8	M10	M12	M16	M20		
HEHO, HECLO, HEA4, HEC4									
Ø D ₁	[mm]	8.0	10.0	12.0	15.0	20.0	25.0		
Ø D ₂	[mm]	4.9	6.4	8.2	10.0	13.5	17.0		
Ls	[mm]	15.0	18.0	21.0	30.0	36.0	40.0		
HEHC									
Ø D ₁	[mm]		10.0	12.0	15.0				
Ø D ₂	[mm]		6,4	8,2	10,0				
Ls	[mm]		15.0	16.0	10.4				

HEHO, HECLO, HEHC, HEA4, HEC4 anchor	
Product description	Annex A2
Installed condition in concrete and setting tool	

Installed condition in precast prestressed hollow core concrete slabs

- do: Nominal diameter of drill bit
- d_f: Fixture clearance hole diameter
- d_b: Bottom flange thickness
- a_p : Distance between anchor position and prestressing steel ≥ 50 mm
- I_c: Core distance ≥ 100 mm
- l_p: Presstressing steel distance ≥ 100 mm
- t_{fix}: Fixture thickness
- c: Edge distance

HEHC anchor	
Product description	Annex A3
Installed condition in precast prestressed hollow core concrete slabs	

Specifications of intended use

Anchorages subjected to:

- Static or quasi static loads for redundant non-structural systems.
- Use for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs).
- The anchor may only be used if in the design and installation specifications for the fixture the excessive slip or failure of one anchor will not result in a significant violation of the requirements on the fixture in the serviceability and ultimate state.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206-1:2013+A1:2016: HEHO / HECLO anchors.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016: HEHC / HEA4 / HEC4 anchors.
- Cracked or uncracked concrete.
- Precast, prestressed hollow core concrete slabs, strength C30/37 to C50/60 according to EN 206:2013+A1:2016: HEHC.

Use conditions (environmental conditions):

- HEHO, HECLO, HEHC: anchorages subjected to dry internal conditions.
- HEA4, HEC4: anchorages subjected to dry internal conditions, to external atmospheric
 exposure (including industrial and marine environment) or to permanent internal damp
 conditions if no particular aggressive conditions exist. Such particular aggressive conditions
 are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride
 atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in
 desulphurization plants or road tunnels where de-icing materials are used). Atmospheres
 under Corrosion Resistance Class CRC III according to EN 1993-1-4:2006+A1:2015 annex A.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method B in accordance with EN 1992-4:2018
- Anchorages under fire exposure are designed in accordance to EN 1992-4:2018. It must be
 ensured that local spalling of the concrete cover does not occur.

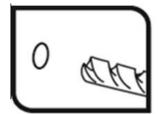
Installation:

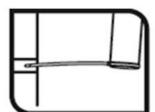
- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- HEHO, HECLO, HEHC: the bolt or threaded rod to be used shall be property class 4.6, 5.6, 5.8,
 6.8 or 8.8 according to ISO 898-1.
- HEA4, HEC4: the bolt or threaded rod to be used shall be property class A4-50, A4-70 or A4-80 according to EN 3506-1:2009
- The length of the bolt shall be determined as: -Minimum bolt length = t_{fix} + $t_{s,min}$ -Maximum bolt length = t_{fix} + $t_{s,max}$

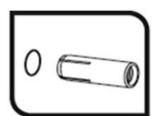
HEHO, HECLO, HEHC, HEA4, HEC4 anchor	
Intended use	Annex B1
Specifications	

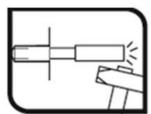
Table C1: Installation parameters in concrete for HEHO, HECLO, HEHC, HEA4, HEC4 anchor

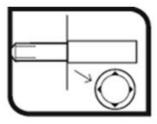
Inctall	Installation parameters		Performances							
installa	ation parameters		М6	M8	M10	M12	M12D	M16	M20	
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	15	16	20	25	
D	Thread diameter:	[mm]	M6	M8	M10	M12	M12	M16	M20	
df	Fixture clearance hole diameter ≤	[mm]	7	9	12	14	14	18	22	
Tinst	Maximum installation torque:	[Nm]	4	11	17	38	38	60	100	
нено,	HECLO		HEHOM06 HECLOM06	HEHOM08 HECLOM08	HEHOM10 HECLOM10	HEHOM12 HECLOM12	HEHOM12D HECLOM12D	HEHOM16 HECLOM16	HEHOM20 HECLOM20	
ls,min	Minimum screwing depth:	[mm]	6	8	10	12	12	16	20	
ls,max	Maximum screwing depth:	[mm]	10	13	17	21	21	27	34	
h ₁	Depth of drilled hole:	[mm]	27	33	43	54	54	70	86	
h _{nom}	Overall anchor embedment depth:	[mm]	25	30	40	50	50	65	80	
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50	50	65	80	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	100	130	160	
Smin	Minimum allowable spacing:	[mm]	60	60	80	100	100	130	160	
Cmin	Minimum allowable distance:	[mm]	105	105	140	175	130	230	280	
HEHC			-	ненсмо 8	HEHCM10	HEHCM12		-	!	
ls,min	Minimum screwing depth:	[mm]		7	8	10				
ls,max	Maximum screwing depth:	[mm]		12	13	13				
h ₁	Depth of drilled hole:	[mm]		28	28	29				
h _{nom}	Overall anchor embedment depth:	[mm]		25	25	25				
h _{ef}	Effective anchorage depth:	[mm]		25	25	25				
h _{min}	Minimum thickness of concrete member:	[mm]		80	80	80				
Smin	Minimum allowable spacing:	[mm]		75	75	75				
C _{min}	Minimum allowable distance:	[mm]		60	60	60				
HEA4, HEC4			HEA4M06 HEC4M06	HEA4M08 HEC4M08	HEA4M10 HEC4M10	HEA4M12 HEC4M12	ı	HEA4M16 HEC4M16	HEA4M20 HEC4M20	
ls,min	Minimum screwing depth:	[mm]	6	8	10	12		16	20	
ls,max	Maximum screwing depth:	[mm]	10	13	17	21		27	34	
h ₁	Depth of drilled hole:	[mm]	27	33	43	54		70	86	
h _{nom}	Overall anchor embedment depth:	[mm]	25	30	40	50		65	80	
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50		65	80	
h _{min}	Minimum thickness of concrete member:	[mm]	80	80	80	100		130	160	
Smin	Minimum allowable spacing:	[mm]	60	60	100	100		130	160	
Cmin	Minimum allowable distance:	[mm]	65	80	100	130		175	210	

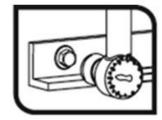

HEHO, HECLO, HEHC, HEA4, HEC4 anchor	
Performances	Annex C1
Installation parameters in concrete	

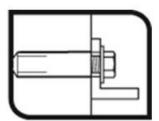

Table C2: Installation parameters in prestressed hollow core concrete slabs for HEHC anchor


Installation parameters in prestressed hollow core concrete slabs					Pe	rformar	ices							
HEHC			-	ненсмов	HEHCM10	HEHCM12	-	-	-					
ls,min	Minimum screwing depth:	[mm]		7	8	10								
ls,max	Maximum screwing depth:	[mm]		12	13	13								
h ₁	Depth of drilled hole:	[mm]		28	28	29								
h _{nom}	Overall anchor embedment depth:	[mm]		25	25	25								
h _{ef}	Effective anchorage depth:	[mm]	-	25	25	25								
d _b	Minimum bottom flange thickness	[mm]	-	35	35	35								
Smin	Minimum allowable spacing:	[mm]	-	200	200	200	-							
Cmin	Minimum allowable distance:	[mm]	-	150	150	150	-							


HEHC anchor	
Performances	Annex C2
Installation parameters in prestressed hollow core concrete slabs	


Installation process





HEHO, F	HECLO.	HEHC.	HEA4.	HEC4	anchor
---------	--------	-------	-------	------	--------

Performances

Installation procedure

Annex C3

<u>Table C3: Essential characteristics in concrete to loads of design method B according to EN 1992-4 for HEHO, HECLO, HEHC anchor</u>

	tial characteristics of resistance to	loads			Р	erforma	nces		
of des	sign method B		M6	M8	M10	M12	M12D	M16	M20
Any lo	oad direction							•	
HEHO,	HECLO								
F ⁰ _{Rk}	Characteristic resistance in C12/15 concrete:	[kN]	1.5	3.0	4.0	6.0		9.0	16.0
F ⁰ Rk	Characteristic resistance in C20/25 to C50/60 concrete:	[kN]	2.0	3.0	5.0	7.5	6.0	12.0	20.0
γins	Installation safety factor:	[-]	1.2	1.2	1.4	1.4	1.4	1.4	1.4
Scr	Critical spacing:	[mm]	75	90	120	150	200	195	240
Ccr	Critical edge distance:	[mm]	40	45	60	75	150	100	120
HEHC									
F ⁰ Rk	Characteristic resistance in C20/25 to C50/60 concrete:	[kN]		2.5	4.0	4.0			
γins	Installation safety factor:	[-]		1.2	1.2	1.2	-		
Scr	Critical spacing:	[mm]		120	120	120			
Ccr	Critical edge distance:	[mm]		60	60	60	-		
Shear	loads: steel failure with lever arm								
M^0 Rk,s	Characteristic bending moment, steel class 4.6	[Nm]	6.1	15.0	29.9	52.4	52.4	133.3	259.8
γMs ¹⁾	Partial safety factor:	[-]				1.67			
M^0 Rk,s	Characteristic bending moment, steel class 4.8	[Nm]	6.1	15.0	29.9	52.4	52.4	133.3	259.8
γMs ¹⁾	Partial safety factor:	[-]		1	1	1.25	1		1
M ⁰ Rk,s	Characteristic bending moment, steel class 5.6	[Nm]	7.6	18.8	37.4	65.5	65.5	166.6	324.8
γ _{Ms} ¹⁾	Partial safety factor:	[-]		1	1	1.67			1
M ⁰ Rk,s	Characteristic bending moment, steel class 5.8	[Nm]	7.6	18.8	37.4	65.5	65.5	166.6	324.8
γMs ¹⁾	Partial safety factor:	[-]	1.25						
$M^0_{Rk,s}$	Characteristic bending moment, steel class 6.8	[Nm]	9.2	22.5	44.9	78.7	78.7	199.9	389.7
γ _{Ms} ¹⁾	Partial safety factor:	[-]				1.25			
$M^0_{\text{Rk,s}}$	Characteristic bending moment, steel class 8.8	[Nm]	12.2	30.0	59.9	104.9	104.9	266.6	519.7
γMs ¹⁾	Partial safety factor:	[-]				1.25			
	In absence of other national regulations								

¹⁾ In absence of other national regulations

HEHO, HECLO, HEHC anchor	
Performances	Annex C4
Essential characteristics in concrete	

<u>Table C4: Essential characteristics in concrete to loads of design method B according to EN 1992-4 for HEA4, HEC4 anchor</u>

Essential characteristic of resistance to loads of			Performances						
design method B				M8	M10	M12	M16	M20	
All loa	ad direction								
F^0_Rk	Characteristic resistance in C20/25 to C50/60 concrete:	[kN]	2.5	3.5	3.5	6.5	12.5	16.5	
γins	Installation safety factor:	[-]			1	.4			
Scr	Critical spacing:	[mm]	200	200	200	200	260	320	
Ccr	Critical edge distance:	[mm]	150	150	150	150	195	240	
Shear	loads: steel failure with lever arm								
M^0 Rk,s	Characteristic bending moment, steel class A4-50	[Nm]	7.6	18.8	37.4	65.6	166.6	324.8	
γMs ¹⁾	Partial safety factor:	[-]		•	2.	38		•	
$M^0_{Rk,s}$	Characteristic bending moment, steel class A4-70	[Nm]	10.6	6.3	52.4	91.8	233.1	454.7	
$\gamma_{\rm Ms}^{1)}$ Partial safety factor: [-]					1.:	56			
M^0 Rk,s	Characteristic bending moment, steel class A4-80	[Nm]	12.2	30.0	59.9	104.9	266.6	519.7	
γ _{Ms} ¹⁾	Partial safety factor:	[-]		•	1.3	34	•	•	

¹⁾ In absence of other national regulations

L		
	HEA4, HEC4 anchor	
	Performances	Annex C5
	Essential characteristic in concrete	

<u>Table C5: Essential characteristic in precast prestressed hollow core slabs to loads of design method B according to EN 1992-4 for HEHC anchor</u>

	tial characteristics of resistance to	loads			Р	erforma	nces		
of des	of design method B			M8	M10	M12	M12D	M16	M20
Any lo	oad direction								
HEHC									
F ⁰ Rk	Characteristic resistance in prestressed hollow core concrete slabs C30/37 to C50/60:	[kN]		5,5	6,0	6,5			
γins	Installation safety factor:	[-]		1.2	1.4	1.4			
Scr	Critical spacing:	[mm]		200	200	200			
Ccr	Critical edge distance:	[mm]		150	150	150			
Shear	loads: steel failure with lever arm								
M ⁰ _{Rk,s}	Characteristic bending moment, steel class 4.6	[Nm]		15.0	29.9	52.4			
γMs ¹⁾	Partial safety factor:	[-]			1.67				
M ⁰ Rk,s	Characteristic bending moment, steel class 4.8	[Nm]		15.0	29.9	52.4			
γMs ¹⁾	Partial safety factor:	[-]			1.25				
M ⁰ Rk,s	Characteristic bending moment, steel class 5.6	[Nm]		18.8	37.4	65.5			
γMs ¹⁾	Partial safety factor:	[-]			1.67				
M ⁰ Rk,s	Characteristic bending moment, steel class 5.8	[Nm]		18.8	37.4	65.5			
γ _{Ms} 1)	Partial safety factor:	[-]			1.25				
M ⁰ Rk,s	Characteristic bending moment, steel class 6.8	[Nm]		22.5	44.9	78.7			
γMs ¹⁾	Partial safety factor:	[-]			1.25				
M ⁰ _{Rk,s}	Characteristic bending moment, steel class 8.8	[Nm]		30.0	59.9	104.9			
γMs ¹⁾	Partial safety factor:	[-]			1.25				

1) In absence of other national regulations

HEHC anchor	
Performances	Annex C6
Essential characteristics in precast prestressed hollow core concrete slabs	

<u>Table C6: Essential characteristics under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEHO, HECLO anchor</u>

Essential characteristics under fire exposure in					Р	erforma	ices			
concret	e C20/25 to C50/60 in a	ny load dire	ection	M6	M8	M10	M12	M12D	M16	M20
R30	Characteristic resistance:	F ⁰ _{Rk,fi30} 1)	[kN]	0.2	0.4	0.9	1.7	1,7	3.1	4.9
R60	Characteristic resistance:	F ⁰ _{Rk,fi60} ¹⁾	[kN]	0.2	0.3	0.8	1.3	1,3	2.4	3.7
R90	Characteristic resistance:	F ⁰ _{Rk,fi90} 1)	[kN]	0.1	0.3	0.6	1.1	1,1	2.0	3.2
R120	Characteristic resistance:	F ⁰ _{Rk,fi120} 1)	[kN]	0.1	0.2	0.5	0.8	0,8	1.6	2.5
R30 to	Spacing	Scr,fi	[mm]				4 x he	f		
R120	Edge distance	C _{cr,fi}	[mm]				2 x he	f		

¹⁾ in absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

<u>Table C7: Essential characteristics under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEHC anchor</u>

Essential characteristics under fire exposure in					Perforr	mances		
concret	e C20/25 to C50/60 in any load di	rection	M6	M8	M10	M12	M16	M20
R30	Characteristic resistance: F ⁰ Rk,fi30 ¹⁾	[kN]		0.54	0.54	0.54		
R60	Characteristic resistance: F ⁰ Rk,fi60 1)	[kN]		0.54	0.54	0.54		
R90	Characteristic resistance: F ⁰ Rk,fi90 1)	[kN]		0.44	0.54	0.54		
R120	Characteristic resistance: F ⁰ Rk,fi120 1)	[kN]		0.37	0.43	0.43		
R30 to	Spacing S _{cr,fi}	[mm]			4 x h _{ef-}			
R120	Edge distance c _{cr,fi}	[mm]			2 x hef			

¹⁾ in absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,f}$ =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c \geq 300 mm

<u>Table C8: Essential characteristics under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for HEA4, HEC4 anchor</u>

Essential characteristics under fire exposure in			Performances						
concret	e C20/25 to C50/60 in an	y load dire	ction	М6	М8	M10	M12	M16	M20
R30	Characteristic resistance:	F ⁰ Rk,fi30 ¹⁾	[kN]	0.20	0.73	0.87	1.63	3.19	4.12
R60	Characteristic resistance:	F ⁰ Rk,fi60 ¹⁾	[kN]	0.18	0.59	0.87	1.63	3.19	4.12
R90	Characteristic resistance:	F ⁰ Rk,fi90 ¹⁾	[kN]	0.14	0.44	0.87	1.63	3.14	4.12
R120	Characteristic resistance:	F ⁰ Rk,fi120 ¹⁾	[kN]	0.10	0.37	0.69	1.30	2.51	3.30
R30 to	Spacing	S _{cr,fi}	[mm]	4 x h _{ef}					
R120	Edge distance	Ccr,fi	[mm]			2 x	hef		

¹⁾ in absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c \geq 300 mm

HEHO, HECLO, HEHC, HEA4, HEC4 anchor	
Performances	Annex C7
Essential characteristics under fire exposure	