

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0350 of 29 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Index chemical capsule CAQU

Bonded fastener for use in concrete

INDEX Técnicas Expansivas S. L. Segador 13. P.I. La Portalada II 26006 LOGROÑO-ESPAÑA SPANIEN

Index Plant 9

14 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-08/0350

Page 2 of 14 | 29 May 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 14 | 29 May 2018

European Technical Assessment ETA-08/0350 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Index chemical capsule CAQU is a bonded anchor consisting of a glass capsule Index CAQU and a threaded anchor rod with hexagon nut and washer. The anchor rod (including nut and washer) is made of zinc-plated steel, hot-dip galvanised steel, stainless steel or made of high corrosion resistant steel.

The glass capsule is placed into the hole and the anchor rod is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 2
Displacements	See Annex
(static and quasi-static loading)	C 1 and C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

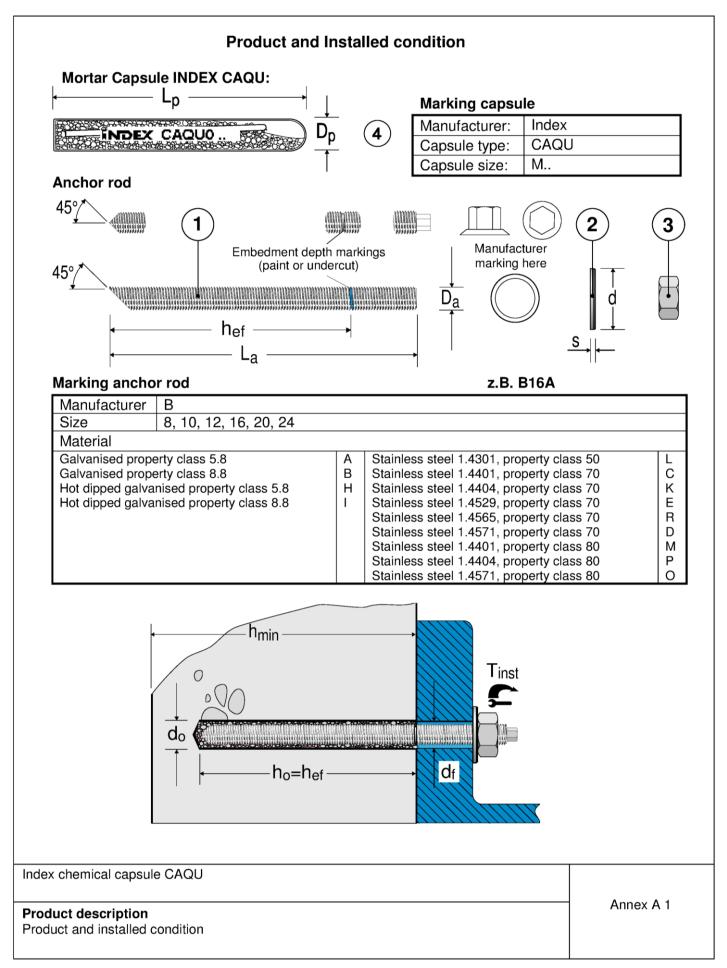
In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-08/0350

Page 4 of 14 | 29 May 2018

English translation prepared by DIBt


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 29 May 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

art	Description	Material						
1	Threaded rod	property of	bon steel class 5.8 or 8.8 9898-1:2013 Hot dip galvanised steel EN ISO 10684:2004+AC:2009 A5 > 8% fracture elongation	Stainless steel A4 1.4401, 1.4404 or 1.4571, property class A4-70 or A4-80 EN ISO 3506-1:2009 Stainless Steel A2 1.4301 Property class A2-50 EN ISO 3506-1:2009 A5 > 8% fracture elongation	High Corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-1:2009 A ₅ > 8% fracture elongation			
2		Carl Galvanised steel ≥ 5µm acc. to EN ISO 4042:1999	bon steel Hot dip galvanised steel 10684:2004+AC:2009	Stainless steel A4 1.4401, 1.4404 or	High Corrosion resistant steel 1.4529 or 1.4565			
		EN ISO 88	37:2006 oder EN ISO 70	7089:2000 bis EN ISO 7094:2000				
3	Hexagon nut	property EN ISC	bon steel v class 5 to 8 9 898-2:2012 Hot dip galvanised steel 10684:2004+AC:2009	Stainless steel A4 1.4401, 1.4404 or 1.4571 property class A4-70 or A4-80 EN ISO 3506-2:2009 Stainless Steel A2 1.4301 Property class A2-50 EN ISO 3506-2:2009	High Corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-2:2009			
			EN ISO 4032:2012 ode	er EN ISO 4034:201	2			
4	Glass capsule	Glass Quartz Resin Hardener						

. Λ -1 N.#. -+ rial

Table A2: **Dimensions**

Part	Description			M8	M10	M12	M16	M20	M24
1	Threaded rod	D_{a}	[mm]	M8	M10	M12	M16	M20	M24
L '	Theaded Tou	$L_a \ge$	[]	95	100	120	140	190	235
2	Washer	S	[mm]	1,6	2,1	2,5	3,0	3,0	4,0
2	washer	d	[mm]	16	21	24	30	37	44
3	Hexagon nut	SW	[mm]	13	17	19	24	30	36
4	Glass sansula	Dp	fuuui	9	11	13	17	22	24
4	Glass capsule	Lp		80	80	95	95	175	210

Index chemical capsule CAQU

Product description Materials Dimensions

Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013.
- Non-cracked concrete.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40°C to +80°C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

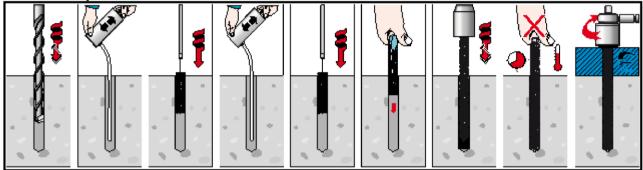
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with FprEN 1992-4:2016 and TR 055.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the
 person responsible for technical matters of the site.
- Dry or wet concrete: all sizes.
- Hole drilling by hammer drilling.
- cleaning the drill hole:
 - removing possibly existing water in the drill hole completely and cleaning the drill hole by at least one blowing operation, by at least 1 x brushing / 1 x blowing / 1 x brushing operation by using the steel brush supplied by the manufacturer; before brushing cleaning the brush and checking whether the brush diameter according to Annex B 2, Table B3 is still sufficient. The steel brush shall produce natural resistance as it enters the anchor hole. If this is not the case a new brush or a brush with a larger diameter must be used.

Index chemical capsule CAQU

Intended Use Specifications Annex B 1


Table B1: Installation para	ameters	S						
Anchor size			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	d_0	[mm]	10	12	14	18	25	28
Cutting diameter	$d_{cut} \leq$	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Depth of drill hole	h_0	[mm]	80	90	110	125	170	210
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
Diameter of steel brush	D	[mm]	11	13	16	20	27	30
Maximum torque moment	T _{inst}	[Nm]	10	20	40	80	120	180

Steel brush

Index brush, extension and SDS+ connector

Installation procedure

D

Table B2: Minimum member thickness, edge distance and spacing

Anchor size			M8	M10	M12	M16	M20	M24
Minimum member thickness	\mathbf{h}_{min}	[mm]	110	120	140	160	220	260
Minimum edge distance	C _{min}	[mm]	40	45	55	65	85	105
Minimum spacing	S _{min}	[mm]	40	45	55	65	85	105

Table B3: Minimum curing time

Temperature in the concrete member	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ 0°C	5 hrs.	10 hrs.
\geq + 5°C	1 hr.	2 hrs.
≥ +20°C	20 min.	40 min.
≥ +30°C	10 min.	20 min.

Index chemical capsule CAQU

Intended Use

Installations parameters, minimum thickness of concrete member, Minimum edge distance and spacing, Minimum curing time

Annex B 3

Metal parts made of zinc plated or hot dip galvanised steel

Table C1: Design method A, characteristic values for tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic resistance property class 5.8	N _{Rk,S}	[kN]	18	29	42	78	123	177
Characteristic resistance property class 8.8	$N_{Rk,S}$	[kN]	29	46	67	126	196	282
Combined pull-out and cond	crete failur	e		_			-	-
Characteristic resistance in no		concrete	e C20/25	5 to C50	/60		-	
Temperature range I	N ⁰ _{Rk,p}	[kN]	20	30	40	60	90	120
Temperature range II	N ⁰ _{Rk,p}	[kN]	20	30	40	50	75	90
Factor for k ₁	$k_{ucr,N}$	[-]			11	,0		
Concrete cone failure								
Factor for k ₁	k _{ucr,N}	[-]			11	,0		
Characteristic edge distance	C _{cr,N}	[mm]			1,5	h _{ef}		
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}		
Splitting ¹⁾								
Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Spacing	S cr,sp	[mm]	3 h _{ef} 2 h _{ef}					
Installation factor	γ_{inst}	[-]			1	,2		

¹⁾ For the proof against splitting failure, $N_{Rk,c}^{0}$ has to be replaced by $N_{Rk,p}^{0}$.

Table C2: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Tension load	Ν	[kN]	8	12	16	20	30	38
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	δ_{N^∞}	[mm]			0	,5		

Index chemical capsule CAQU

Performance Characteristic values for tension loads Displacements

Metal parts made of stainless steel 1.4301, 1.4401, 1.4404 or 1.4571

Table C3: Design method A, characteristic values for tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic resistance strength class A2-50	N _{Rk,S}	[kN]	18	29	42	79	123	177
Characteristic resistance strength class A4-70	N _{Rk,S}	[kN]	26	40	59	110	172	247
Characteristic resistance strength class A4-80	N _{Rk,S}	[kN]	29	46	67	126	196	282
Combined pull-out and cond	crete failur	e						
Characteristic resistance in no	on-cracked	concrete	e C20/25	5 to C50	/60		-	
Temperature range I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperature range II	$N^0_{Rk,p}$	[kN]	20	30	40	50	75	90
Factor for k ₁	$k_{ucr,N}$	[-]			11	,0		
Concrete cone failure								
Factor for k ₁	k _{ucr,N}	[-]			11	١,0		
Characteristic edge distance	C _{cr,N}	[mm]			1,5	i h _{ef}		
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}		
Splitting ¹⁾								
Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Spacing	S _{cr,sp}	[mm]						
Installation factor	γinst	[-]			1	,2		

 $^{1)}$ $\,$ For the proof against splitting failure, $\,N^{0}_{\,\,\text{Rk},c}\,\text{has to be replaced by }N^{0}_{\,\,\text{Rk},p}$

Table C4: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Tension load	Ν	[kN]	8	12	16	20	30	38
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	δ_{N^∞}	[mm]			0	,5		

Index chemical capsule CAQU

Performance Characteristic values for tension loads Displacements

Metal parts made of high corrosion resistant steel 1.4529 or 1.4565

Table C5: Design method A, characteristic values for tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic resistance strength class 70	N _{Rk,S}	[kN]	26	40	59	110	172	247
Combined pull-out and cond	crete failur	e						
Characteristic resistance in no	on-cracked	concrete	e C20/25	5 to C50	/60			
Temperature range I	$N^0_{Rk,p}$	[kN]	20	30	40	60	90	120
Temperature range II	N ⁰ _{Rk,p}	[kN]	20	30	40	50	75	90
Factor for k ₁	k _{ucr,N}	[-]	11,0					
Concrete cone failure								
Factor for k ₁	$k_{ucr,N}$	[-]			11	1,0		
Characteristic edge distance	C _{cr,N}	[mm]			1,5	5 h _{ef}		
Characteristic spacing	S _{cr,N}	[mm]			3	h _{ef}		
Splitting ¹⁾								
Edge distance	C _{cr,sp}	[mm]	1,5 h _{ef} 1 h _{ef}					
Spacing	S _{cr,sp}	[mm]	3 h _{ef} 2 h _{ef}					
Installation factor	γ_{inst}	[-]			1	,2		

¹⁾ For the proof against splitting failure, $N^0_{Rk,c}$ has to be replaced by $N^0_{Rk,p}$.

Table C6: Displacements under tension loads

Anchor size			M8	M10	M12	M16	M20	M24
Tension load	Ν	[kN]	8	12	16	20	30	38
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	δ _{N∞}	[mm]	0,5					

Index chemical capsule CAQU

Performance Characteristic values for tension loads Displacements

Metal parts made of zinc plated or hot dip galvanised steel

Table C7: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance property class 5.8	$V^0_{\ Rk,S}$	[kN]	9	14	21	39	61	88
Characteristic resistance property class 8.8	$V^0_{\ Rk,S}$	[kN]	15	23	33	63	98	141
Ductility factor	k ₇	[-]			0	,8		
Steel failure with lever arm								
Characteristic bending moment property class 5.8	${\sf M}^0{}_{\sf Rk,S}$	[Nm]	19	37	65	166	325	561
Characteristic bending moment property class 8.8	$M^0_{Rk,S}$	[Nm]	30	60	105	266	519	898
Pry out failure								
Factor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	18	25	28
Installation factor	γinst	[-]			1	,0		

Table C8:Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	[kN]	5	8	12	22	35	50
Displacement	δ_{V0}	[mm]	2	3	3	4	5	5
	δ_{V^∞}	[mm]	4	5	5	6	7	7

Index chemical capsule CAQU

Performance Characteristic values for shear loads Displacements

Metal parts made of stainless steel 1.4301, 1.4401, 1.4404 or 1.4571

Table C9: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance strength class A2-50	$V^0{}_{Rk,S}$	[kN]	9	15	21	39	61	88
Characteristic resistance strength class A4-70	$V^0_{\ Rk,S}$	[kN]	13	20	29	55	86	124
Characteristic resistance strength class A4-80	$V^0_{Rk,S}$	[kN]	15	23	33	62	98	141
Ductility factor	k ₇	[-]	0,8					
Steel failure with lever arm								
Characteristic bending moment strength class A2-50	$M^0_{\ Rk,S}$	[Nm]	19	37	66	167	325	561
Characteristic bending moment strength class A4-70	M ⁰ _{Rk,S}	[Nm]	26	52	92	233	454	785
Characteristic bending moment strength class A4-80	M ⁰ _{Rk,S}	[Nm]	30	60	105	266	519	898
Pry out failure				_				
Factor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	18	25	28
Installation factor	γinst	[-]			1	,0		

Table C10: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Shear load	V	[kN]	5	8	12	22	35	50
Displacement	δ _{vo}	[mm]	2	3	3	4	5	5
	$\delta_{V^{\infty}}$	[mm]	4	5	5	6	7	7

Index chemical capsule CAQU

Performance Characteristic values for shear loads Displacements

Metal parts made of high corrosion resistant steel 1.4529 or 1.4565

Table C11: Design method A, characteristic values for shear loads

Anchor size			M8	M10	M12	M16	M20	M24
Steel failure without lever arm								
Characteristic resistance strength class 70	$V^0_{\ Rk,S}$	[kN]	13	20	29	55	86	124
Ductility factor	k ₇	[-]			0	,8		
Steel failure with lever arm								
Characteristic bending moment strength class 70	$M^0_{Rk,S}$	[Nm]	26	52	92	233	454	785
Pry out failure								
Factor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]			1	,0		
Concrete edge failure								
Effective length of anchor	ℓ_{f}	[mm]	80	90	110	125	170	210
Outside diameter of anchor	d _{nom}	[mm]	10	12	14	18	25	28
Installation factor	γinst	[-]			1	,0		

Table C12: Displacements under shear loads

Anchor size			M8	M10	M12	M16	M20	M 24
Shear load	V	[kN]	5	8	12	22	35	50
Displacement	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V\infty}$	[mm]	4	5	5	6	7	7

Index chemical capsule CAQU

Performance Characteristic values for shear loads Displacements